Skip to content
Snippets Groups Projects
Select Git revision
  • 01dd1d5c06b227f3f1f0b03c33ce239871e8e176
  • master default protected
  • release/1.1.4
  • release/1.1.3
  • release/1.1.1
  • 1.4.2
  • 1.4.1
  • 1.4.0
  • 1.3.0
  • 1.2.1
  • 1.2.0
  • 1.1.5
  • 1.1.4
  • 1.1.3
  • 1.1.1
  • 1.1.0
  • 1.0.9
  • 1.0.8
  • 1.0.7
  • v1.0.5
  • 1.0.5
21 results

UnificationException.java

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    Update_Scheme.py 5.64 KiB
    # -*- coding: utf-8 -*-
    """
    @author: Laura C. Kühle
    
    d = detail coefficient (rename?)
    other A (from M) = ? (Is it the same???)
    A = basis_projection_left
    M1 = wavelet_projection_left
    phi = DG basis vector
    psi = wavelet vector
    
    TODO: Find better names for A, B, M1, and M2
    
    """
    import numpy as np
    import timeit
    
    
    class UpdateScheme(object):
        def __init__(self, detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time,
                     history_threshold, left_bound, right_bound):
            # Unpack positional arguments
            self._detector = detector
            self._limiter = limiter
            self._init_cond = init_cond
            self._mesh = mesh
            self._wave_speed = wave_speed
            self._polynom_degree = polynom_degree
            self._num_grid_cells = num_grid_cells
            self._final_time = final_time
            self._history_threshold = history_threshold
            self._left_bound = left_bound
            self._right_bound = right_bound
    
            self._reset()
    
        def get_name(self):
            return self.name
    
        def step(self, projection, cfl_number, current_time):
            current_projection, troubled_cells = self._apply_stability_method(projection, cfl_number)
    
            return current_projection, troubled_cells
    
        def _apply_stability_method(self, projection, cfl_number):
            return projection, []
    
        def _reset(self):
            # Set additional necessary fixed instance variables
            self.name = 'None'
            self._interval_len = self._right_bound-self._left_bound
            self._cell_len = self._interval_len / self._num_grid_cells
    
            # Set matrix A
            matrix = []
            for i in range(self._polynom_degree+1):
                new_row = []
                for j in range(self._polynom_degree+1):
                    new_entry = -1.0
                    if (j < i) & ((i+j) % 2 == 1):
                        new_entry = 1.0
                    new_row.append(new_entry*np.sqrt((i+0.5) * (j+0.5)))
                matrix.append(new_row)
            self._A = np.array(matrix)  # former: inv_mass @ np.array(matrix)
    
            # Set matrix B
            matrix = []
            for i in range(self._polynom_degree+1):
                new_row = []
                for j in range(self._polynom_degree+1):
                    new_entry = np.sqrt((i+0.5) * (j+0.5)) * (-1.0)**i
                    new_row.append(new_entry)
                matrix.append(new_row)
            self._B = np.array(matrix)  # former: inv_mass @ np.array(matrix)
    
        def _apply_limiter(self, current_projection):
            troubled_cells = self._detector.get_cells(current_projection)
    
            new_projection = current_projection.copy()
            for cell in troubled_cells:
                new_projection[:,  cell] = self._limiter.apply(current_projection, cell)
    
            return new_projection, troubled_cells
    
        def _enforce_boundary_condition(self, current_projection):
            current_projection[:, 0] = current_projection[:, self._num_grid_cells]
            current_projection[:, self._num_grid_cells+1] = current_projection[:, 1]
            return current_projection
    
    
    class SSPRK3(UpdateScheme):
        def __init__(self, detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time,
                     history_threshold, left_bound, right_bound):
            super().__init__(detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time,
                             history_threshold, left_bound, right_bound)
    
            # Set name of update scheme
            self.name = 'SSPRK3'
    
        # Override method of superclass
        def _apply_stability_method(self, projection, cfl_number):
            original_projection = projection
    
            current_projection = self._apply_first_step(original_projection, cfl_number)
            current_projection, __ = self._apply_limiter(current_projection)
            current_projection = self._enforce_boundary_condition(current_projection)
    
            current_projection = self._apply_second_step(original_projection, current_projection, cfl_number)
            current_projection, __ = self._apply_limiter(current_projection)
            current_projection = self._enforce_boundary_condition(current_projection)
    
            current_projection = self._apply_third_step(original_projection, current_projection, cfl_number)
            current_projection, troubled_cells = self._apply_limiter(current_projection)
            current_projection = self._enforce_boundary_condition(current_projection)
    
            return current_projection, troubled_cells
    
        def _update_right_hand_side(self, current_projection):
            # Initialize vector and set first entry to accommodate for ghost cell
            right_hand_side = [0]
    
            for j in range(self._num_grid_cells):
                right_hand_side.append(2*(self._A @ current_projection[:, j+1]
                                          + self._B @ current_projection[:, j]))
    
            # Set ghost cells to respective value
            right_hand_side[0] = right_hand_side[self._num_grid_cells]
            right_hand_side.append(right_hand_side[1])
    
            return np.transpose(right_hand_side)
    
        def _apply_first_step(self, original_projection, cfl_number):
            right_hand_side = self._update_right_hand_side(original_projection)
            return original_projection + (cfl_number*right_hand_side)
    
        def _apply_second_step(self, original_projection, current_projection, cfl_number):
            right_hand_side = self._update_right_hand_side(current_projection)
            return 1/4 * (3*original_projection + (current_projection + cfl_number*right_hand_side))
    
        def _apply_third_step(self, original_projection, current_projection, cfl_number):
            right_hand_side = self._update_right_hand_side(current_projection)
            return 1/3 * (original_projection + 2*(current_projection + cfl_number*right_hand_side))