# -*- coding: utf-8 -*- """ @author: Laura C. Kühle d = detail coefficient (rename?) other A (from M) = ? (Is it the same???) A = basis_projection_left M1 = wavelet_projection_left phi = DG basis vector psi = wavelet vector TODO: Find better names for A, B, M1, and M2 """ import numpy as np import timeit class UpdateScheme(object): def __init__(self, detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time, history_threshold, left_bound, right_bound): # Unpack positional arguments self._detector = detector self._limiter = limiter self._init_cond = init_cond self._mesh = mesh self._wave_speed = wave_speed self._polynom_degree = polynom_degree self._num_grid_cells = num_grid_cells self._final_time = final_time self._history_threshold = history_threshold self._left_bound = left_bound self._right_bound = right_bound self._reset() def get_name(self): return self.name def step(self, projection, cfl_number, current_time): current_projection, troubled_cells = self._apply_stability_method(projection, cfl_number) return current_projection, troubled_cells def _apply_stability_method(self, projection, cfl_number): return projection, [] def _reset(self): # Set additional necessary fixed instance variables self.name = 'None' self._interval_len = self._right_bound-self._left_bound self._cell_len = self._interval_len / self._num_grid_cells # Set matrix A matrix = [] for i in range(self._polynom_degree+1): new_row = [] for j in range(self._polynom_degree+1): new_entry = -1.0 if (j < i) & ((i+j) % 2 == 1): new_entry = 1.0 new_row.append(new_entry*np.sqrt((i+0.5) * (j+0.5))) matrix.append(new_row) self._A = np.array(matrix) # former: inv_mass @ np.array(matrix) # Set matrix B matrix = [] for i in range(self._polynom_degree+1): new_row = [] for j in range(self._polynom_degree+1): new_entry = np.sqrt((i+0.5) * (j+0.5)) * (-1.0)**i new_row.append(new_entry) matrix.append(new_row) self._B = np.array(matrix) # former: inv_mass @ np.array(matrix) def _apply_limiter(self, current_projection): troubled_cells = self._detector.get_cells(current_projection) new_projection = current_projection.copy() for cell in troubled_cells: new_projection[:, cell] = self._limiter.apply(current_projection, cell) return new_projection, troubled_cells def _enforce_boundary_condition(self, current_projection): current_projection[:, 0] = current_projection[:, self._num_grid_cells] current_projection[:, self._num_grid_cells+1] = current_projection[:, 1] return current_projection class SSPRK3(UpdateScheme): def __init__(self, detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time, history_threshold, left_bound, right_bound): super().__init__(detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time, history_threshold, left_bound, right_bound) # Set name of update scheme self.name = 'SSPRK3' # Override method of superclass def _apply_stability_method(self, projection, cfl_number): original_projection = projection current_projection = self._apply_first_step(original_projection, cfl_number) current_projection, __ = self._apply_limiter(current_projection) current_projection = self._enforce_boundary_condition(current_projection) current_projection = self._apply_second_step(original_projection, current_projection, cfl_number) current_projection, __ = self._apply_limiter(current_projection) current_projection = self._enforce_boundary_condition(current_projection) current_projection = self._apply_third_step(original_projection, current_projection, cfl_number) current_projection, troubled_cells = self._apply_limiter(current_projection) current_projection = self._enforce_boundary_condition(current_projection) return current_projection, troubled_cells def _update_right_hand_side(self, current_projection): # Initialize vector and set first entry to accommodate for ghost cell right_hand_side = [0] for j in range(self._num_grid_cells): right_hand_side.append(2*(self._A @ current_projection[:, j+1] + self._B @ current_projection[:, j])) # Set ghost cells to respective value right_hand_side[0] = right_hand_side[self._num_grid_cells] right_hand_side.append(right_hand_side[1]) return np.transpose(right_hand_side) def _apply_first_step(self, original_projection, cfl_number): right_hand_side = self._update_right_hand_side(original_projection) return original_projection + (cfl_number*right_hand_side) def _apply_second_step(self, original_projection, current_projection, cfl_number): right_hand_side = self._update_right_hand_side(current_projection) return 1/4 * (3*original_projection + (current_projection + cfl_number*right_hand_side)) def _apply_third_step(self, original_projection, current_projection, cfl_number): right_hand_side = self._update_right_hand_side(current_projection) return 1/3 * (original_projection + 2*(current_projection + cfl_number*right_hand_side))