Skip to content
Snippets Groups Projects
Unverified Commit 58e12709 authored by zhuqi's avatar zhuqi Committed by GitHub
Browse files

Merge pull request #93 from ConvLab/readme

update nlu model link
parents ca32b469 a959c56a
No related branches found
No related tags found
No related merge requests found
...@@ -46,6 +46,10 @@ Trained models and their performance are available in [Hugging Face Hub](https:/ ...@@ -46,6 +46,10 @@ Trained models and their performance are available in [Hugging Face Hub](https:/
| [t5-small-nlu-sgd](https://huggingface.co/ConvLab/t5-small-nlu-sgd) | NLU | SGD | | [t5-small-nlu-sgd](https://huggingface.co/ConvLab/t5-small-nlu-sgd) | NLU | SGD |
| [t5-small-nlu-tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-nlu-tm1_tm2_tm3) | NLU | TM1+TM2+TM3 | | [t5-small-nlu-tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-nlu-tm1_tm2_tm3) | NLU | TM1+TM2+TM3 |
| [t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3) | NLU | MultiWOZ 2.1+SGD+TM1+TM2+TM3 | | [t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3) | NLU | MultiWOZ 2.1+SGD+TM1+TM2+TM3 |
| [t5-small-nlu-multiwoz21-context3](https://huggingface.co/ConvLab/t5-small-nlu-multiwoz21-context3) | NLU (context=3) | MultiWOZ 2.1 |
| [t5-small-nlu-tm1-context3](https://huggingface.co/ConvLab/t5-small-nlu-tm1-context3) | NLU (context=3) | TM1 |
| [t5-small-nlu-tm2-context3](https://huggingface.co/ConvLab/t5-small-nlu-tm2-context3) | NLU (context=3) | TM2 |
| [t5-small-nlu-tm3-context3](https://huggingface.co/ConvLab/t5-small-nlu-tm3-context3) | NLU (context=3) | TM3 |
| [t5-small-dst-multiwoz21](https://huggingface.co/ConvLab/t5-small-dst-multiwoz21) | DST | MultiWOZ 2.1 | | [t5-small-dst-multiwoz21](https://huggingface.co/ConvLab/t5-small-dst-multiwoz21) | DST | MultiWOZ 2.1 |
| [t5-small-dst-sgd](https://huggingface.co/ConvLab/t5-small-dst-sgd) | DST | SGD | | [t5-small-dst-sgd](https://huggingface.co/ConvLab/t5-small-dst-sgd) | DST | SGD |
| [t5-small-dst-tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-dst-tm1_tm2_tm3) | DST | TM1+TM2+TM3 | | [t5-small-dst-tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-dst-tm1_tm2_tm3) | DST | TM1+TM2+TM3 |
......
...@@ -33,7 +33,7 @@ The result (`output.json`) will be saved under the `output_dir` of the config fi ...@@ -33,7 +33,7 @@ The result (`output.json`) will be saved under the `output_dir` of the config fi
## Performance on unified format datasets ## Performance on unified format datasets
To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. Trained models are available at [Hugging Face Hub](https://huggingface.co/ConvLab/bert-base-nlu).
<table> <table>
<thead> <thead>
......
...@@ -45,7 +45,7 @@ See `nlu.py` under `multiwoz` and `unified_datasets` directories. ...@@ -45,7 +45,7 @@ See `nlu.py` under `multiwoz` and `unified_datasets` directories.
## Performance on unified format datasets ## Performance on unified format datasets
To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. Trained models are available at [Hugging Face Hub](https://huggingface.co/ConvLab/milu).
<table> <table>
<thead> <thead>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment