diff --git a/convlab/base_models/t5/README.md b/convlab/base_models/t5/README.md index c0894e6c5cd38b5738ef85f7d900ecdf304d3fa6..754a1db40474b485c78d5a7857ffef70b4658c24 100644 --- a/convlab/base_models/t5/README.md +++ b/convlab/base_models/t5/README.md @@ -46,6 +46,10 @@ Trained models and their performance are available in [Hugging Face Hub](https:/ | [t5-small-nlu-sgd](https://huggingface.co/ConvLab/t5-small-nlu-sgd) | NLU | SGD | | [t5-small-nlu-tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-nlu-tm1_tm2_tm3) | NLU | TM1+TM2+TM3 | | [t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3) | NLU | MultiWOZ 2.1+SGD+TM1+TM2+TM3 | +| [t5-small-nlu-multiwoz21-context3](https://huggingface.co/ConvLab/t5-small-nlu-multiwoz21-context3) | NLU (context=3) | MultiWOZ 2.1 | +| [t5-small-nlu-tm1-context3](https://huggingface.co/ConvLab/t5-small-nlu-tm1-context3) | NLU (context=3) | TM1 | +| [t5-small-nlu-tm2-context3](https://huggingface.co/ConvLab/t5-small-nlu-tm2-context3) | NLU (context=3) | TM2 | +| [t5-small-nlu-tm3-context3](https://huggingface.co/ConvLab/t5-small-nlu-tm3-context3) | NLU (context=3) | TM3 | | [t5-small-dst-multiwoz21](https://huggingface.co/ConvLab/t5-small-dst-multiwoz21) | DST | MultiWOZ 2.1 | | [t5-small-dst-sgd](https://huggingface.co/ConvLab/t5-small-dst-sgd) | DST | SGD | | [t5-small-dst-tm1_tm2_tm3](https://huggingface.co/ConvLab/t5-small-dst-tm1_tm2_tm3) | DST | TM1+TM2+TM3 | diff --git a/convlab/nlu/jointBERT/README.md b/convlab/nlu/jointBERT/README.md index ab8f40ecbafb8c3f6d827286442f6ecc3cf8fa97..647007548f18ad5c3adf97565acb7897ab025c5f 100755 --- a/convlab/nlu/jointBERT/README.md +++ b/convlab/nlu/jointBERT/README.md @@ -33,7 +33,7 @@ The result (`output.json`) will be saved under the `output_dir` of the config fi ## Performance on unified format datasets -To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. +To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. Trained models are available at [Hugging Face Hub](https://huggingface.co/ConvLab/bert-base-nlu). <table> <thead> diff --git a/convlab/nlu/milu/README.md b/convlab/nlu/milu/README.md index 2213475f87ac77c1a010d0a406a49c6976810442..afe475e7939d0b0a75de665bf74ed2ebe78a23f5 100755 --- a/convlab/nlu/milu/README.md +++ b/convlab/nlu/milu/README.md @@ -45,7 +45,7 @@ See `nlu.py` under `multiwoz` and `unified_datasets` directories. ## Performance on unified format datasets -To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. +To illustrate that it is easy to use the model for any dataset that in our unified format, we report the performance on several datasets in our unified format. We follow `README.md` and config files in `unified_datasets/` to generate `predictions.json`, then evaluate it using `../evaluate_unified_datasets.py`. Note that we use almost the same hyper-parameters for different datasets, which may not be optimal. Trained models are available at [Hugging Face Hub](https://huggingface.co/ConvLab/milu). <table> <thead>