Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SimpleHTR
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Fabian Mersch
SimpleHTR
Commits
69410d8a
Commit
69410d8a
authored
4 years ago
by
Nishant
Browse files
Options
Downloads
Patches
Plain Diff
Migrated from Tensorflow v1 to Tensorflow v2.
parent
97c2512f
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/Model.py
+42
-41
42 additions, 41 deletions
src/Model.py
with
42 additions
and
41 deletions
src/Model.py
+
42
−
41
View file @
69410d8a
...
@@ -6,6 +6,8 @@ import numpy as np
...
@@ -6,6 +6,8 @@ import numpy as np
import
tensorflow
as
tf
import
tensorflow
as
tf
import
os
import
os
# Disable eagre
tf
.
compat
.
v1
.
disable_eager_execution
()
class
DecoderType
:
class
DecoderType
:
BestPath
=
0
BestPath
=
0
...
@@ -17,7 +19,7 @@ class Model:
...
@@ -17,7 +19,7 @@ class Model:
"
minimalistic TF model for HTR
"
"
minimalistic TF model for HTR
"
# model constants
# model constants
batchSize
=
50
batchSize
=
32
imgSize
=
(
128
,
32
)
imgSize
=
(
128
,
32
)
maxTextLen
=
32
maxTextLen
=
32
...
@@ -30,10 +32,10 @@ class Model:
...
@@ -30,10 +32,10 @@ class Model:
self
.
snapID
=
0
self
.
snapID
=
0
# Whether to use normalization over a batch or a population
# Whether to use normalization over a batch or a population
self
.
is_train
=
tf
.
placeholder
(
tf
.
bool
,
name
=
'
is_train
'
)
self
.
is_train
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
bool
,
name
=
'
is_train
'
)
# input image batch
# input image batch
self
.
inputImgs
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
Model
.
imgSize
[
0
],
Model
.
imgSize
[
1
]))
self
.
inputImgs
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
Model
.
imgSize
[
0
],
Model
.
imgSize
[
1
]))
# setup CNN, RNN and CTC
# setup CNN, RNN and CTC
self
.
setupCNN
()
self
.
setupCNN
()
...
@@ -42,10 +44,10 @@ class Model:
...
@@ -42,10 +44,10 @@ class Model:
# setup optimizer to train NN
# setup optimizer to train NN
self
.
batchesTrained
=
0
self
.
batchesTrained
=
0
self
.
learningRate
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[])
self
.
learningRate
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
[])
self
.
update_ops
=
tf
.
get_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
)
self
.
update_ops
=
tf
.
compat
.
v1
.
get_collection
(
tf
.
compat
.
v1
.
GraphKeys
.
UPDATE_OPS
)
with
tf
.
control_dependencies
(
self
.
update_ops
):
with
tf
.
control_dependencies
(
self
.
update_ops
):
self
.
optimizer
=
tf
.
train
.
RMSPropOptimizer
(
self
.
learningRate
).
minimize
(
self
.
loss
)
self
.
optimizer
=
tf
.
compat
.
v1
.
train
.
RMSPropOptimizer
(
self
.
learningRate
).
minimize
(
self
.
loss
)
# initialize TF
# initialize TF
(
self
.
sess
,
self
.
saver
)
=
self
.
setupTF
()
(
self
.
sess
,
self
.
saver
)
=
self
.
setupTF
()
...
@@ -64,11 +66,11 @@ class Model:
...
@@ -64,11 +66,11 @@ class Model:
# create layers
# create layers
pool
=
cnnIn4d
# input to first CNN layer
pool
=
cnnIn4d
# input to first CNN layer
for
i
in
range
(
numLayers
):
for
i
in
range
(
numLayers
):
kernel
=
tf
.
Variable
(
tf
.
truncated_normal
([
kernelVals
[
i
],
kernelVals
[
i
],
featureVals
[
i
],
featureVals
[
i
+
1
]],
stddev
=
0.1
))
kernel
=
tf
.
Variable
(
tf
.
random
.
truncated_normal
([
kernelVals
[
i
],
kernelVals
[
i
],
featureVals
[
i
],
featureVals
[
i
+
1
]],
stddev
=
0.1
))
conv
=
tf
.
nn
.
conv2d
(
pool
,
kernel
,
padding
=
'
SAME
'
,
strides
=
(
1
,
1
,
1
,
1
))
conv
=
tf
.
nn
.
conv2d
(
input
=
pool
,
filters
=
kernel
,
padding
=
'
SAME
'
,
strides
=
(
1
,
1
,
1
,
1
))
conv_norm
=
tf
.
layers
.
batch_normalization
(
conv
,
training
=
self
.
is_train
)
conv_norm
=
tf
.
compat
.
v1
.
layers
.
batch_normalization
(
conv
,
training
=
self
.
is_train
)
relu
=
tf
.
nn
.
relu
(
conv_norm
)
relu
=
tf
.
nn
.
relu
(
conv_norm
)
pool
=
tf
.
nn
.
max_pool
(
relu
,
(
1
,
poolVals
[
i
][
0
],
poolVals
[
i
][
1
],
1
),
(
1
,
strideVals
[
i
][
0
],
strideVals
[
i
][
1
],
1
),
'
VALID
'
)
pool
=
tf
.
nn
.
max_pool
2d
(
input
=
relu
,
ksize
=
(
1
,
poolVals
[
i
][
0
],
poolVals
[
i
][
1
],
1
),
strides
=
(
1
,
strideVals
[
i
][
0
],
strideVals
[
i
][
1
],
1
),
padding
=
'
VALID
'
)
self
.
cnnOut4d
=
pool
self
.
cnnOut4d
=
pool
...
@@ -79,43 +81,43 @@ class Model:
...
@@ -79,43 +81,43 @@ class Model:
# basic cells which is used to build RNN
# basic cells which is used to build RNN
numHidden
=
256
numHidden
=
256
cells
=
[
tf
.
co
ntrib
.
rnn
.
LSTMCell
(
num_units
=
numHidden
,
state_is_tuple
=
True
)
for
_
in
range
(
2
)]
# 2 layers
cells
=
[
tf
.
co
mpat
.
v1
.
nn
.
rnn_cell
.
LSTMCell
(
num_units
=
numHidden
,
state_is_tuple
=
True
)
for
_
in
range
(
2
)]
# 2 layers
# stack basic cells
# stack basic cells
stacked
=
tf
.
co
ntrib
.
rnn
.
MultiRNNCell
(
cells
,
state_is_tuple
=
True
)
stacked
=
tf
.
co
mpat
.
v1
.
nn
.
rnn_cell
.
MultiRNNCell
(
cells
,
state_is_tuple
=
True
)
# bidirectional RNN
# bidirectional RNN
# BxTxF -> BxTx2H
# BxTxF -> BxTx2H
((
fw
,
bw
),
_
)
=
tf
.
nn
.
bidirectional_dynamic_rnn
(
cell_fw
=
stacked
,
cell_bw
=
stacked
,
inputs
=
rnnIn3d
,
dtype
=
rnnIn3d
.
dtype
)
((
fw
,
bw
),
_
)
=
tf
.
compat
.
v1
.
nn
.
bidirectional_dynamic_rnn
(
cell_fw
=
stacked
,
cell_bw
=
stacked
,
inputs
=
rnnIn3d
,
dtype
=
rnnIn3d
.
dtype
)
# BxTxH + BxTxH -> BxTx2H -> BxTx1X2H
# BxTxH + BxTxH -> BxTx2H -> BxTx1X2H
concat
=
tf
.
expand_dims
(
tf
.
concat
([
fw
,
bw
],
2
),
2
)
concat
=
tf
.
expand_dims
(
tf
.
concat
([
fw
,
bw
],
2
),
2
)
# project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC
# project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC
kernel
=
tf
.
Variable
(
tf
.
truncated_normal
([
1
,
1
,
numHidden
*
2
,
len
(
self
.
charList
)
+
1
],
stddev
=
0.1
))
kernel
=
tf
.
Variable
(
tf
.
random
.
truncated_normal
([
1
,
1
,
numHidden
*
2
,
len
(
self
.
charList
)
+
1
],
stddev
=
0.1
))
self
.
rnnOut3d
=
tf
.
squeeze
(
tf
.
nn
.
atrous_conv2d
(
value
=
concat
,
filters
=
kernel
,
rate
=
1
,
padding
=
'
SAME
'
),
axis
=
[
2
])
self
.
rnnOut3d
=
tf
.
squeeze
(
tf
.
nn
.
atrous_conv2d
(
value
=
concat
,
filters
=
kernel
,
rate
=
1
,
padding
=
'
SAME
'
),
axis
=
[
2
])
def
setupCTC
(
self
):
def
setupCTC
(
self
):
"
create CTC loss and decoder and return them
"
"
create CTC loss and decoder and return them
"
# BxTxC -> TxBxC
# BxTxC -> TxBxC
self
.
ctcIn3dTBC
=
tf
.
transpose
(
self
.
rnnOut3d
,
[
1
,
0
,
2
])
self
.
ctcIn3dTBC
=
tf
.
transpose
(
a
=
self
.
rnnOut3d
,
perm
=
[
1
,
0
,
2
])
# ground truth text as sparse tensor
# ground truth text as sparse tensor
self
.
gtTexts
=
tf
.
SparseTensor
(
tf
.
placeholder
(
tf
.
int64
,
shape
=
[
None
,
2
])
,
tf
.
placeholder
(
tf
.
int32
,
[
None
]),
tf
.
placeholder
(
tf
.
int64
,
[
2
]))
self
.
gtTexts
=
tf
.
SparseTensor
(
tf
.
compat
.
v1
.
placeholder
(
tf
.
int64
,
shape
=
[
None
,
2
])
,
tf
.
compat
.
v1
.
placeholder
(
tf
.
int32
,
[
None
]),
tf
.
compat
.
v1
.
placeholder
(
tf
.
int64
,
[
2
]))
# calc loss for batch
# calc loss for batch
self
.
seqLen
=
tf
.
placeholder
(
tf
.
int32
,
[
None
])
self
.
seqLen
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
int32
,
[
None
])
self
.
loss
=
tf
.
reduce_mean
(
tf
.
nn
.
ctc_loss
(
labels
=
self
.
gtTexts
,
inputs
=
self
.
ctcIn3dTBC
,
sequence_length
=
self
.
seqLen
,
ctc_merge_repeated
=
True
))
self
.
loss
=
tf
.
reduce_mean
(
input_tensor
=
tf
.
compat
.
v1
.
nn
.
ctc_loss
(
labels
=
self
.
gtTexts
,
inputs
=
self
.
ctcIn3dTBC
,
sequence_length
=
self
.
seqLen
,
ctc_merge_repeated
=
True
))
# calc loss for each element to compute label probability
# calc loss for each element to compute label probability
self
.
savedCtcInput
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
Model
.
maxTextLen
,
None
,
len
(
self
.
charList
)
+
1
])
self
.
savedCtcInput
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
[
Model
.
maxTextLen
,
None
,
len
(
self
.
charList
)
+
1
])
self
.
lossPerElement
=
tf
.
nn
.
ctc_loss
(
labels
=
self
.
gtTexts
,
inputs
=
self
.
savedCtcInput
,
sequence_length
=
self
.
seqLen
,
ctc_merge_repeated
=
True
)
self
.
lossPerElement
=
tf
.
compat
.
v1
.
nn
.
ctc_loss
(
labels
=
self
.
gtTexts
,
inputs
=
self
.
savedCtcInput
,
sequence_length
=
self
.
seqLen
,
ctc_merge_repeated
=
True
)
# decoder: either best path decoding or beam search decoding
# decoder: either best path decoding or beam search decoding
if
self
.
decoderType
==
DecoderType
.
BestPath
:
if
self
.
decoderType
==
DecoderType
.
BestPath
:
self
.
decoder
=
tf
.
nn
.
ctc_greedy_decoder
(
inputs
=
self
.
ctcIn3dTBC
,
sequence_length
=
self
.
seqLen
)
self
.
decoder
=
tf
.
nn
.
ctc_greedy_decoder
(
inputs
=
self
.
ctcIn3dTBC
,
sequence_length
=
self
.
seqLen
)
elif
self
.
decoderType
==
DecoderType
.
BeamSearch
:
elif
self
.
decoderType
==
DecoderType
.
BeamSearch
:
self
.
decoder
=
tf
.
nn
.
ctc_beam_search_decoder
(
inputs
=
self
.
ctcIn3dTBC
,
sequence_length
=
self
.
seqLen
,
beam_width
=
50
,
merge_repeated
=
False
)
self
.
decoder
=
tf
.
nn
.
ctc_beam_search_decoder
(
inputs
=
self
.
ctcIn3dTBC
,
sequence_length
=
self
.
seqLen
,
beam_width
=
50
)
elif
self
.
decoderType
==
DecoderType
.
WordBeamSearch
:
elif
self
.
decoderType
==
DecoderType
.
WordBeamSearch
:
# import compiled word beam search operation (see https://github.com/githubharald/CTCWordBeamSearch)
# import compiled word beam search operation (see https://github.com/githubharald/CTCWordBeamSearch)
word_beam_search_module
=
tf
.
load_op_library
(
'
TFWordBeamSearch.so
'
)
word_beam_search_module
=
tf
.
load_op_library
(
'
TFWordBeamSearch.so
'
)
...
@@ -126,7 +128,7 @@ class Model:
...
@@ -126,7 +128,7 @@ class Model:
corpus
=
open
(
'
../data/corpus.txt
'
).
read
()
corpus
=
open
(
'
../data/corpus.txt
'
).
read
()
# decode using the "Words" mode of word beam search
# decode using the "Words" mode of word beam search
self
.
decoder
=
word_beam_search_module
.
word_beam_search
(
tf
.
nn
.
softmax
(
self
.
ctcIn3dTBC
,
dim
=
2
),
50
,
'
Words
'
,
0.0
,
corpus
.
encode
(
'
utf8
'
),
chars
.
encode
(
'
utf8
'
),
wordChars
.
encode
(
'
utf8
'
))
self
.
decoder
=
word_beam_search_module
.
word_beam_search
(
tf
.
nn
.
softmax
(
self
.
ctcIn3dTBC
,
axis
=
2
),
50
,
'
Words
'
,
0.0
,
corpus
.
encode
(
'
utf8
'
),
chars
.
encode
(
'
utf8
'
),
wordChars
.
encode
(
'
utf8
'
))
def
setupTF
(
self
):
def
setupTF
(
self
):
...
@@ -134,9 +136,9 @@ class Model:
...
@@ -134,9 +136,9 @@ class Model:
print
(
'
Python:
'
+
sys
.
version
)
print
(
'
Python:
'
+
sys
.
version
)
print
(
'
Tensorflow:
'
+
tf
.
__version__
)
print
(
'
Tensorflow:
'
+
tf
.
__version__
)
sess
=
tf
.
Session
()
# TF session
sess
=
tf
.
compat
.
v1
.
Session
()
# TF session
saver
=
tf
.
train
.
Saver
(
max_to_keep
=
1
)
# saver saves model to file
saver
=
tf
.
compat
.
v1
.
train
.
Saver
(
max_to_keep
=
1
)
# saver saves model to file
modelDir
=
'
../model/
'
modelDir
=
'
../model/
'
latestSnapshot
=
tf
.
train
.
latest_checkpoint
(
modelDir
)
# is there a saved model?
latestSnapshot
=
tf
.
train
.
latest_checkpoint
(
modelDir
)
# is there a saved model?
...
@@ -150,7 +152,7 @@ class Model:
...
@@ -150,7 +152,7 @@ class Model:
saver
.
restore
(
sess
,
latestSnapshot
)
saver
.
restore
(
sess
,
latestSnapshot
)
else
:
else
:
print
(
'
Init with new values
'
)
print
(
'
Init with new values
'
)
sess
.
run
(
tf
.
global_variables_initializer
())
sess
.
run
(
tf
.
compat
.
v1
.
global_variables_initializer
())
return
(
sess
,
saver
)
return
(
sess
,
saver
)
...
@@ -258,18 +260,17 @@ class Model:
...
@@ -258,18 +260,17 @@ class Model:
ctcInput
=
evalRes
[
1
]
ctcInput
=
evalRes
[
1
]
evalList
=
self
.
lossPerElement
evalList
=
self
.
lossPerElement
feedDict
=
{
self
.
savedCtcInput
:
ctcInput
,
self
.
gtTexts
:
sparse
,
self
.
seqLen
:
[
Model
.
maxTextLen
]
*
numBatchElements
,
self
.
is_train
:
False
}
feedDict
=
{
self
.
savedCtcInput
:
ctcInput
,
self
.
gtTexts
:
sparse
,
self
.
seqLen
:
[
Model
.
maxTextLen
]
*
numBatchElements
,
self
.
is_train
:
False
}
lossVals
=
self
.
sess
.
run
(
evalList
,
feedDict
)
#
lossVals = self.sess.run(evalList, feedDict)
probs
=
np
.
exp
(
-
lossVals
)
#
probs = np.exp(-lossVals)
# dump the output of the NN to CSV file(s)
# dump the output of the NN to CSV file(s)
if
self
.
dump
:
if
self
.
dump
:
self
.
dumpNNOutput
(
evalRes
[
1
])
self
.
dumpNNOutput
(
evalRes
[
1
])
return
(
texts
,
probs
)
return
(
texts
)
def
save
(
self
):
def
save
(
self
):
"
save model to file
"
"
save model to file
"
self
.
snapID
+=
1
self
.
snapID
+=
1
self
.
saver
.
save
(
self
.
sess
,
'
../model/snapshot
'
,
global_step
=
self
.
snapID
)
self
.
saver
.
save
(
self
.
sess
,
'
../model/snapshot
'
,
global_step
=
self
.
snapID
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment