Skip to content
Snippets Groups Projects
Commit aa33f1d3 authored by Laura Christine Kühle's avatar Laura Christine Kühle
Browse files

Outsourced run command for SM rule 'plot_approximation_results' into script.

parent 2e17d521
Branches
No related tags found
No related merge requests found
# -*- coding: utf-8 -*-
"""Script to plot results of ANN model testing.
@author: Laura C. Kühle
"""
import sys
import time
from tcd import Initial_Condition
from tcd import Quadrature
from tcd.Plotting import plot_approximation_results
def main() -> None:
"""Plot results of ANN model tests."""
with open(str(snakemake.log[0]), 'w', encoding='utf-8') as logfile:
sys.stdout = logfile
sys.stderr = logfile
tic = time.perf_counter()
if snakemake.config['schemes'][snakemake.wildcards['scheme']][
'detector'] == 'ArtificialNeuralNetwork':
snakemake.params['dg_params']['detector_config']['model_state'] = \
snakemake.params['directory'] + '/trained models/' + \
snakemake.config['schemes'][snakemake.wildcards['scheme']][
'detector_config']['model_state']
detector_dict = snakemake.params['dg_params'].copy()
init_cond = getattr(Initial_Condition, detector_dict.pop(
'init_cond', 'Sine'))(config=detector_dict.pop('init_config', {}))
quadrature = getattr(Quadrature, detector_dict.pop(
'quadrature', 'Gauss'))(detector_dict.pop('quadrature_config', {}))
colors = detector_dict.pop('colors', None)
plot_approximation_results(
directory=snakemake.params['plot_dir'],
plot_name=snakemake.wildcards['scheme'], colors=colors,
data_file=snakemake.params.plot_dir + '/' + snakemake.wildcards[
'scheme'],
quadrature=quadrature, init_cond=init_cond)
toc = time.perf_counter()
print(f'Time: {toc - tic:0.4f}s')
if __name__ == '__main__':
if "snakemake" in locals():
main()
else:
print('Not Defined.')
import sys
import time
from scripts.tcd import Initial_Condition
from scripts.tcd import Quadrature
from scripts.tcd.Plotting import plot_approximation_results
configfile: 'config.yaml' configfile: 'config.yaml'
...@@ -48,36 +41,9 @@ rule plot_approximation_results: ...@@ -48,36 +41,9 @@ rule plot_approximation_results:
expand(DIR + '/fig/{plot}/{{scheme}}.pdf', plot=PLOTS) expand(DIR + '/fig/{plot}/{{scheme}}.pdf', plot=PLOTS)
params: params:
dg_params=lambda wildcards: config['schemes'][wildcards.scheme], dg_params=lambda wildcards: config['schemes'][wildcards.scheme],
plot_dir=DIR + '/fig' plot_dir=DIR + '/fig',
directory = DIR
log: log:
DIR+'/log/plot_approximation_results/{scheme}.log' DIR+'/log/plot_approximation_results/{scheme}.log'
run: script:
with open(str(log), 'w') as logfile: '../scripts/plot_approximation_results.py'
sys.stdout = logfile
sys.stderr = logfile
tic = time.perf_counter()
if config['schemes'][wildcards.scheme]['detector'] == \
'ArtificialNeuralNetwork':
params.dg_params['detector_config']['model_state'] = \
DIR + '/trained models/' + config['schemes'][
wildcards.scheme]['detector_config']['model_state']
detector_dict = params.dg_params.copy()
init_cond = getattr(Initial_Condition, detector_dict.pop(
'init_cond', 'Sine'))(
config=detector_dict.pop('init_config', {}))
quadrature = getattr(Quadrature, detector_dict.pop(
'quadrature', 'Gauss'))(detector_dict.pop(
'quadrature_config', {}))
colors = detector_dict.pop('colors', None)
plot_approximation_results(directory=params.plot_dir,
plot_name=wildcards.scheme, colors=colors,
data_file=params.plot_dir+'/'+wildcards.scheme,
quadrature=quadrature, init_cond=init_cond)
toc = time.perf_counter()
print(f'Time: {toc - tic:0.4f}s')
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment