Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Troubled Cell Detection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Laura Christine Kühle
Troubled Cell Detection
Commits
a54d86f4
Commit
a54d86f4
authored
4 years ago
by
Laura Christine Kühle
Browse files
Options
Downloads
Patches
Plain Diff
Fixed cell averages and reconstructions to create data with an x-point stencil.
parent
a557d401
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
ANN_Data_Generator.py
+4
-5
4 additions, 5 deletions
ANN_Data_Generator.py
DG_Approximation.py
+2
-3
2 additions, 3 deletions
DG_Approximation.py
Troubled_Cell_Detector.py
+14
-5
14 additions, 5 deletions
Troubled_Cell_Detector.py
with
20 additions
and
13 deletions
ANN_Data_Generator.py
+
4
−
5
View file @
a54d86f4
...
@@ -112,7 +112,7 @@ class TrainingDataGenerator(object):
...
@@ -112,7 +112,7 @@ class TrainingDataGenerator(object):
# Calculating Cell centers for a given 1D domain with n elements, and
# Calculating Cell centers for a given 1D domain with n elements, and
# Calculating Corresponding Legendre Basis Coefficients for given polynomial_degree
# Calculating Corresponding Legendre Basis Coefficients for given polynomial_degree
num_grid_cells
=
3
num_grid_cells
=
self
.
_stencil_length
# former:
3
# Create stencil and basis_coefficients for smooth_function mapped onto stencil
# Create stencil and basis_coefficients for smooth_function mapped onto stencil
interval
,
centers
,
h
=
self
.
_build_stencil
()
interval
,
centers
,
h
=
self
.
_build_stencil
()
centers
=
[
center
[
0
]
for
center
in
centers
]
centers
=
[
center
[
0
]
for
center
in
centers
]
...
@@ -126,9 +126,10 @@ class TrainingDataGenerator(object):
...
@@ -126,9 +126,10 @@ class TrainingDataGenerator(object):
quadrature_config
=
{
'
num_eval_points
'
:
polynomial_degree
+
1
})
quadrature_config
=
{
'
num_eval_points
'
:
polynomial_degree
+
1
})
if
initial_condition
.
is_smooth
():
if
initial_condition
.
is_smooth
():
input_data
[
i
]
=
dg_scheme
.
build_training_data
(
0
,
initial_condition
)
input_data
[
i
]
=
dg_scheme
.
build_training_data
(
0
,
self
.
_stencil_length
,
initial_condition
)
else
:
else
:
input_data
[
i
]
=
dg_scheme
.
build_training_data
(
centers
[
1
],
initial_condition
)
input_data
[
i
]
=
dg_scheme
.
build_training_data
(
centers
[
self
.
_stencil_length
//
2
],
self
.
_stencil_length
,
initial_condition
)
# Update Function ID
# Update Function ID
if
(
i
%
num_function_samples
==
num_function_samples
-
1
)
and
(
function_id
!=
len
(
initial_conditions
)
-
1
):
if
(
i
%
num_function_samples
==
num_function_samples
-
1
)
and
(
function_id
!=
len
(
initial_conditions
)
-
1
):
...
@@ -161,8 +162,6 @@ class TrainingDataGenerator(object):
...
@@ -161,8 +162,6 @@ class TrainingDataGenerator(object):
# Pick a Random point between the left and right bound
# Pick a Random point between the left and right bound
point
=
np
.
random
.
random
(
1
)
*
(
self
.
_right_bound
-
self
.
_left_bound
)
+
self
.
_left_bound
point
=
np
.
random
.
random
(
1
)
*
(
self
.
_right_bound
-
self
.
_left_bound
)
+
self
.
_left_bound
# if int(10 * point) % 2 == 1:
# point = -point
# Ensure Bounds of x-point stencil are within the left and right bound
# Ensure Bounds of x-point stencil are within the left and right bound
while
point
-
self
.
_stencil_length
/
2
*
grid_spacing
<
self
.
_left_bound
\
while
point
-
self
.
_stencil_length
/
2
*
grid_spacing
<
self
.
_left_bound
\
...
...
This diff is collapsed.
Click to expand it.
DG_Approximation.py
+
2
−
3
View file @
a54d86f4
...
@@ -109,7 +109,6 @@ class DGScheme(object):
...
@@ -109,7 +109,6 @@ class DGScheme(object):
# Update projection
# Update projection
projection
,
troubled_cells
=
self
.
_update_scheme
.
step
(
projection
,
cfl_number
)
projection
,
troubled_cells
=
self
.
_update_scheme
.
step
(
projection
,
cfl_number
)
iteration
+=
1
iteration
+=
1
if
(
iteration
%
self
.
_history_threshold
)
==
0
:
if
(
iteration
%
self
.
_history_threshold
)
==
0
:
...
@@ -185,9 +184,9 @@ class DGScheme(object):
...
@@ -185,9 +184,9 @@ class DGScheme(object):
print
(
np
.
array
(
output_matrix
).
shape
)
print
(
np
.
array
(
output_matrix
).
shape
)
return
np
.
transpose
(
np
.
array
(
output_matrix
))
return
np
.
transpose
(
np
.
array
(
output_matrix
))
def
build_training_data
(
self
,
adjustment
,
initial_condition
=
None
):
def
build_training_data
(
self
,
adjustment
,
stencil_length
,
initial_condition
=
None
):
if
initial_condition
is
None
:
if
initial_condition
is
None
:
initial_condition
=
self
.
_init_cond
initial_condition
=
self
.
_init_cond
projection
=
self
.
_do_initial_projection
(
initial_condition
,
adjustment
)
projection
=
self
.
_do_initial_projection
(
initial_condition
,
adjustment
)
return
self
.
_detector
.
calculate_cell_average_and_reconstructions
(
projection
[:,
1
:
-
1
])
return
self
.
_detector
.
calculate_cell_average_and_reconstructions
(
projection
[:,
1
:
-
1
]
,
stencil_length
)
This diff is collapsed.
Click to expand it.
Troubled_Cell_Detector.py
+
14
−
5
View file @
a54d86f4
...
@@ -2,8 +2,9 @@
...
@@ -2,8 +2,9 @@
"""
"""
@author: Laura C. Kühle, Soraya Terrab (sorayaterrab)
@author: Laura C. Kühle, Soraya Terrab (sorayaterrab)
TODO: Fix cell averages and reconstructions to create data with an x-point stencil
TODO: Fix cell averages and reconstructions to create data with an x-point stencil
-> Done
TODO: Add comments to get_cells() for ArtificialNeuralNetwork -> Done
TODO: Add comments to get_cells() for ArtificialNeuralNetwork -> Done
TODO:
"""
"""
import
os
import
os
...
@@ -55,12 +56,20 @@ class TroubledCellDetector(object):
...
@@ -55,12 +56,20 @@ class TroubledCellDetector(object):
def
get_cells
(
self
,
projection
):
def
get_cells
(
self
,
projection
):
pass
pass
def
calculate_cell_average_and_reconstructions
(
self
,
projection
):
def
calculate_cell_average_and_reconstructions
(
self
,
projection
,
stencil_length
):
"""
Calculate the cell averages of all cells in a projection. Reconstructions are only calculated for the middle
cell and added left and right to it, respectively.
Here come some parameter.
"""
cell_averages
=
self
.
_calculate_approximate_solution
(
projection
,
[
0
],
0
)
cell_averages
=
self
.
_calculate_approximate_solution
(
projection
,
[
0
],
0
)
left_reconstructions
=
self
.
_calculate_approximate_solution
(
projection
,
[
-
1
],
self
.
_polynomial_degree
)
left_reconstructions
=
self
.
_calculate_approximate_solution
(
projection
,
[
-
1
],
self
.
_polynomial_degree
)
right_reconstructions
=
self
.
_calculate_approximate_solution
(
projection
,
[
1
],
self
.
_polynomial_degree
)
right_reconstructions
=
self
.
_calculate_approximate_solution
(
projection
,
[
1
],
self
.
_polynomial_degree
)
return
np
.
array
(
list
(
map
(
np
.
float64
,
zip
(
cell_averages
[:,
0
],
left_reconstructions
[:,
1
],
cell_averages
[:,
1
],
middle_idx
=
stencil_length
//
2
right_reconstructions
[:,
1
],
cell_averages
[:,
2
]))))
return
np
.
array
(
list
(
map
(
np
.
float64
,
zip
(
cell_averages
[:,
:
middle_idx
],
left_reconstructions
[:,
middle_idx
],
cell_averages
[:,
middle_idx
],
right_reconstructions
[:,
middle_idx
],
cell_averages
[:,
middle_idx
+
1
:]))))
def
plot_results
(
self
,
projection
,
troubled_cell_history
,
time_history
):
def
plot_results
(
self
,
projection
,
troubled_cell_history
,
time_history
):
self
.
_plot_shock_tube
(
troubled_cell_history
,
time_history
)
self
.
_plot_shock_tube
(
troubled_cell_history
,
time_history
)
...
@@ -219,7 +228,7 @@ class ArtificialNeuralNetwork(TroubledCellDetector):
...
@@ -219,7 +228,7 @@ class ArtificialNeuralNetwork(TroubledCellDetector):
# Calculate input data depending on stencil length
# Calculate input data depending on stencil length
input_data
=
torch
.
from_numpy
(
np
.
vstack
([
self
.
calculate_cell_average_and_reconstructions
(
input_data
=
torch
.
from_numpy
(
np
.
vstack
([
self
.
calculate_cell_average_and_reconstructions
(
projection
[:,
cell
-
num_ghost_cells
:
cell
+
num_ghost_cells
+
1
])
projection
[:,
cell
-
num_ghost_cells
:
cell
+
num_ghost_cells
+
1
]
,
self
.
_stencil_len
)
for
cell
in
range
(
num_ghost_cells
,
len
(
projection
[
0
])
-
num_ghost_cells
)]))
for
cell
in
range
(
num_ghost_cells
,
len
(
projection
[
0
])
-
num_ghost_cells
)]))
# Evaluate troubled cell probabilities
# Evaluate troubled cell probabilities
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment