Skip to content
Snippets Groups Projects
Commit 8d5bdee9 authored by Laura Christine Kühle's avatar Laura Christine Kühle
Browse files

Improved function selection for a more even distribution.

parent 9e27f660
No related branches found
No related tags found
No related merge requests found
......@@ -8,6 +8,7 @@ TODO: Adapt code to generate both normalized and non-normalized data -> Done
TODO: Improve verbose output -> Done
TODO: Change order of methods -> Done
TODO: Fix bug in initialization of input matrix -> Done
TODO: Improve function selection (more even distribution) -> Done
"""
......@@ -88,13 +89,13 @@ class TrainingDataGenerator(object):
print('Samples to complete:', num_samples)
tic = timeit.default_timer()
num_function_samples = num_samples//len(initial_conditions)
function_id = 0
input_data = np.zeros((num_samples, self._stencil_length+2))
num_init_cond = len(initial_conditions)
count = 0
for i in range(num_samples):
# Pick a Function here
function_id = i % num_init_cond
initial_condition = initial_conditions[function_id]['function']
initial_condition.randomize(initial_conditions[function_id]['config'])
......@@ -122,11 +123,6 @@ class TrainingDataGenerator(object):
input_data[i] = dg_scheme.build_training_data(
centers[self._stencil_length//2], self._stencil_length, initial_condition)
# Update Function ID
if (i % num_function_samples == num_function_samples - 1) \
and (function_id != len(initial_conditions)-1):
function_id = function_id + 1
count += 1
if count % 100 == 0:
print(str(count) + ' samples completed.')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment