Skip to content
Snippets Groups Projects
Commit 6b87e5d0 authored by Laura Christine Kühle's avatar Laura Christine Kühle
Browse files

Moved plotting into separate function.

parent 78553b35
No related branches found
No related tags found
No related merge requests found
......@@ -3,7 +3,8 @@
@author: Laura C. Kühle
Urgent:
TODO: Move plotting into separate function
TODO: Move plotting into separate function -> Done
TODO: Move plotting into separate rule
TODO: Adapt TCD from Soraya
(Dropbox->...->TEST_troubled-cell-detector->Troubled_Cell_Detector)
TODO: Add verbose output
......@@ -201,22 +202,19 @@ class DGScheme:
self._polynomial_degree, self._num_grid_cells, self._detector,
self._limiter)
def approximate(self, data_dir, data_name):
def approximate(self, data_file):
"""Approximates projection.
Initializes projection and evolves it in time. Each time step consists
of three parts: A projection update, a troubled-cell detection,
and limiting based on the detected cells.
At final time, result and error plots are
generated and, if verbose flag is set, also displayed.
At final time, results are saved in JSON file.
Attributes
----------
data_dir: str
Path to directory in which data is saved.
data_name : str
Name of data.
data_file: str
Path to file in which data will be saved.
"""
projection = self._do_initial_projection(self._init_cond)
......@@ -254,12 +252,28 @@ class DGScheme:
for key in approx_stats.keys()}
# Save approximation results in JSON format
with open(data_dir + '/' + data_name + '.json', 'w') \
with open(data_file + '.json', 'w') \
as json_file:
json_file.write(json.dumps(approx_stats))
def plot_approximation_results(self, data_file, directory, plot_name):
"""Plots given approximation results.
Generates plots based on given data, sets plot directory if not
already existing, and saves plots.
Parameters
----------
data_file: str
Path to data file for plotting.
directory: str
Path to directory in which plots will be saved.
plot_name : str
Name of plot.
"""
# Read approximation results
with open(data_dir + '/' + data_name + '.json') as json_file:
with open(data_file + '.json') as json_file:
approx_stats = json.load(json_file)
# Decode all ndarrays by converting lists
......@@ -270,32 +284,18 @@ class DGScheme:
# and any detector-dependant plots
self._detector.plot_results(**approx_stats)
def save_plots(self, plot_dir, plot_name):
"""Saves plotted results.
Sets plot directory, if not already existing, and saves plots
generated during the last approximation.
Parameters
----------
plot_dir: str
Path to directory in which plots are saved.
plot_name : str
Name of plot.
"""
# Set paths for plot files if not existing already
if not os.path.exists(plot_dir):
os.makedirs(plot_dir)
if not os.path.exists(directory):
os.makedirs(directory)
# Save plots
for identifier in plt.get_figlabels():
# Set path for figure directory if not existing already
if not os.path.exists(plot_dir + '/' + identifier):
os.makedirs(plot_dir + '/' + identifier)
if not os.path.exists(directory + '/' + identifier):
os.makedirs(directory + '/' + identifier)
plt.figure(identifier)
plt.savefig(plot_dir + '/' + identifier + '/' +
plt.savefig(directory + '/' + identifier + '/' +
plot_name + '.pdf')
def _reset(self):
......
data_dir: 'model-Soraya_Mar02'
data_dir: 'model-Mar14'
random_seed: 1234
# Parameter for Approximation with Troubled Cell Detection
Approximation:
plot_dir: 'fig-Soraya_Mar02'
plot_dir: 'fig-Mar14'
schemes:
Separation_Test:
......@@ -21,7 +21,7 @@ Approximation:
detector_config:
fold_len: 16
whisker_len: 3
add_reconstructions: False
add_reconstructions: True
model_state: 'Adam.model.pt'
init_cond: 'Sine'
......@@ -52,7 +52,7 @@ ANN_Data:
smooth_troubled_balance: 0.5
stencil_length: 3
add_reconstructions : False
add_reconstructions : True
# Initial Conditions for Training Data
functions:
......@@ -87,7 +87,7 @@ ANN_Training:
threshold: 1.0e-5
batch_size: 500
model: ThreeLayerReLu
model_config: {input_size: 3}
model_config: {}
loss_function: BCELoss
optimizer: Adam
SGD:
......@@ -95,7 +95,7 @@ ANN_Training:
threshold: 1.0e-5
batch_size: 500
model: ThreeLayerReLu
model_config: {input_size: 3}
model_config: {}
loss_function: BCELoss
optimizer: SGD
......
......@@ -48,10 +48,11 @@ rule approximate_solution:
print(params.dg_params)
dg_scheme = DGScheme(**params.dg_params)
dg_scheme.approximate(data_dir=params.plot_dir,
data_name=wildcards.scheme)
dg_scheme.save_plots(plot_dir=params.plot_dir,
plot_name=wildcards.scheme)
dg_scheme.approximate(
data_file=params.plot_dir+'/'+wildcards.scheme)
dg_scheme.plot_approximation_results(directory=params.plot_dir,
plot_name=wildcards.scheme,
data_file=params.plot_dir+'/'+wildcards.scheme)
toc = time.perf_counter()
print(f'Time: {toc - tic:0.4f}s')
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment