Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Troubled Cell Detection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Laura Christine Kühle
Troubled Cell Detection
Commits
38895885
Commit
38895885
authored
3 years ago
by
Laura Christine Kühle
Browse files
Options
Downloads
Patches
Plain Diff
Removed 'stencil_length' as instance variable.
parent
b7f28556
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
ANN_Data_Generator.py
+26
-19
26 additions, 19 deletions
ANN_Data_Generator.py
workflows/ANN_data.smk
+3
-3
3 additions, 3 deletions
workflows/ANN_data.smk
with
29 additions
and
22 deletions
ANN_Data_Generator.py
+
26
−
19
View file @
38895885
...
@@ -33,7 +33,7 @@ class TrainingDataGenerator:
...
@@ -33,7 +33,7 @@ class TrainingDataGenerator:
Builds random training data.
Builds random training data.
"""
"""
def
__init__
(
self
,
left_bound
=-
1
,
right_bound
=
1
,
stencil_length
=
3
):
def
__init__
(
self
,
left_bound
=-
1
,
right_bound
=
1
):
"""
Initializes TrainingDataGenerator.
"""
Initializes TrainingDataGenerator.
Parameters
Parameters
...
@@ -42,8 +42,6 @@ class TrainingDataGenerator:
...
@@ -42,8 +42,6 @@ class TrainingDataGenerator:
Left boundary of interval. Default: -1.
Left boundary of interval. Default: -1.
right_bound : float, optional
right_bound : float, optional
Right boundary of interval. Default: 1.
Right boundary of interval. Default: 1.
stencil_length : int, optional
Size of training data array. Default: 3.
"""
"""
self
.
_basis_list
=
[
OrthonormalLegendre
(
pol_deg
)
self
.
_basis_list
=
[
OrthonormalLegendre
(
pol_deg
)
...
@@ -54,14 +52,9 @@ class TrainingDataGenerator:
...
@@ -54,14 +52,9 @@ class TrainingDataGenerator:
num_ghost_cells
=
0
,
num_grid_cells
=
2
**
exp
)
num_ghost_cells
=
0
,
num_grid_cells
=
2
**
exp
)
for
exp
in
range
(
3
,
9
)]
for
exp
in
range
(
3
,
9
)]
# Set stencil length
if
stencil_length
%
2
==
0
:
raise
ValueError
(
'
Invalid stencil length (even value):
"
%d
"'
%
stencil_length
)
self
.
_stencil_length
=
stencil_length
def
build_training_data
(
self
,
initial_conditions
,
num_samples
,
balance
=
0.5
,
def
build_training_data
(
self
,
initial_conditions
,
num_samples
,
balance
=
0.5
,
directory
=
'
test_data
'
,
add_reconstructions
=
True
):
directory
=
'
test_data
'
,
add_reconstructions
=
True
,
stencil_length
=
3
):
"""
Builds random training data.
"""
Builds random training data.
Creates training data consisting of random ANN input and saves it.
Creates training data consisting of random ANN input and saves it.
...
@@ -80,6 +73,8 @@ class TrainingDataGenerator:
...
@@ -80,6 +73,8 @@ class TrainingDataGenerator:
add_reconstructions : bool, optional
add_reconstructions : bool, optional
Flag whether reconstructions of the middle cell are included.
Flag whether reconstructions of the middle cell are included.
Default: True.
Default: True.
stencil_length : int, optional
Size of training data array. Default: 3.
Returns
Returns
-------
-------
...
@@ -89,10 +84,17 @@ class TrainingDataGenerator:
...
@@ -89,10 +84,17 @@ class TrainingDataGenerator:
"""
"""
tic
=
time
.
perf_counter
()
tic
=
time
.
perf_counter
()
# Set stencil length
if
stencil_length
%
2
==
0
:
raise
ValueError
(
'
Invalid stencil length (even value):
"
%d
"'
%
stencil_length
)
print
(
'
Calculating training data...
\n
'
)
print
(
'
Calculating training data...
\n
'
)
data_dict
=
self
.
_calculate_data_set
(
initial_conditions
,
data_dict
=
self
.
_calculate_data_set
(
initial_conditions
,
num_samples
,
balance
,
num_samples
,
balance
,
add_reconstructions
)
add_reconstructions
,
stencil_length
)
print
(
'
Finished calculating training data!
'
)
print
(
'
Finished calculating training data!
'
)
self
.
_save_data
(
directory
=
directory
,
data
=
data_dict
)
self
.
_save_data
(
directory
=
directory
,
data
=
data_dict
)
...
@@ -101,7 +103,7 @@ class TrainingDataGenerator:
...
@@ -101,7 +103,7 @@ class TrainingDataGenerator:
return
data_dict
return
data_dict
def
_calculate_data_set
(
self
,
initial_conditions
,
num_samples
,
balance
,
def
_calculate_data_set
(
self
,
initial_conditions
,
num_samples
,
balance
,
add_reconstructions
):
add_reconstructions
,
stencil_length
):
"""
Calculates random training data of given stencil length.
"""
Calculates random training data of given stencil length.
Creates training data with a given ratio between smooth and
Creates training data with a given ratio between smooth and
...
@@ -117,6 +119,8 @@ class TrainingDataGenerator:
...
@@ -117,6 +119,8 @@ class TrainingDataGenerator:
Ratio between smooth and discontinuous training data.
Ratio between smooth and discontinuous training data.
add_reconstructions : bool
add_reconstructions : bool
Flag whether reconstructions of the middle cell are included.
Flag whether reconstructions of the middle cell are included.
stencil_length : int
Size of training data array.
Returns
Returns
-------
-------
...
@@ -137,12 +141,13 @@ class TrainingDataGenerator:
...
@@ -137,12 +141,13 @@ class TrainingDataGenerator:
num_smooth_samples
=
round
(
num_samples
*
balance
)
num_smooth_samples
=
round
(
num_samples
*
balance
)
smooth_input
,
smooth_output
=
self
.
_generate_cell_data
(
smooth_input
,
smooth_output
=
self
.
_generate_cell_data
(
num_smooth_samples
,
smooth_functions
,
add_reconstructions
,
True
)
num_smooth_samples
,
smooth_functions
,
add_reconstructions
,
stencil_length
,
True
)
num_troubled_samples
=
num_samples
-
num_smooth_samples
num_troubled_samples
=
num_samples
-
num_smooth_samples
troubled_input
,
troubled_output
=
self
.
_generate_cell_data
(
troubled_input
,
troubled_output
=
self
.
_generate_cell_data
(
num_troubled_samples
,
troubled_functions
,
add_reconstructions
,
num_troubled_samples
,
troubled_functions
,
add_reconstructions
,
False
)
stencil_length
,
False
)
# Merge Data
# Merge Data
input_matrix
=
np
.
concatenate
((
smooth_input
,
troubled_input
),
axis
=
0
)
input_matrix
=
np
.
concatenate
((
smooth_input
,
troubled_input
),
axis
=
0
)
...
@@ -162,7 +167,7 @@ class TrainingDataGenerator:
...
@@ -162,7 +167,7 @@ class TrainingDataGenerator:
'
input_data.normalized
'
:
norm_input_matrix
}
'
input_data.normalized
'
:
norm_input_matrix
}
def
_generate_cell_data
(
self
,
num_samples
,
initial_conditions
,
def
_generate_cell_data
(
self
,
num_samples
,
initial_conditions
,
add_reconstructions
,
is_smooth
):
add_reconstructions
,
stencil_length
,
is_smooth
):
"""
Generates random training input and output.
"""
Generates random training input and output.
Generates random training input and output for either smooth or
Generates random training input and output for either smooth or
...
@@ -177,6 +182,8 @@ class TrainingDataGenerator:
...
@@ -177,6 +182,8 @@ class TrainingDataGenerator:
List of names of initial conditions for training.
List of names of initial conditions for training.
add_reconstructions : bool
add_reconstructions : bool
Flag whether reconstructions of the middle cell are included.
Flag whether reconstructions of the middle cell are included.
stencil_length : int
Size of training data array.
is_smooth : bool
is_smooth : bool
Flag whether initial conditions are smooth.
Flag whether initial conditions are smooth.
...
@@ -194,7 +201,7 @@ class TrainingDataGenerator:
...
@@ -194,7 +201,7 @@ class TrainingDataGenerator:
print
(
'
Samples to complete:
'
,
num_samples
)
print
(
'
Samples to complete:
'
,
num_samples
)
tic
=
time
.
perf_counter
()
tic
=
time
.
perf_counter
()
num_datapoints
=
self
.
_
stencil_length
num_datapoints
=
stencil_length
if
add_reconstructions
:
if
add_reconstructions
:
num_datapoints
+=
2
num_datapoints
+=
2
input_data
=
np
.
zeros
((
num_samples
,
num_datapoints
))
input_data
=
np
.
zeros
((
num_samples
,
num_datapoints
))
...
@@ -209,11 +216,11 @@ class TrainingDataGenerator:
...
@@ -209,11 +216,11 @@ class TrainingDataGenerator:
# Build mesh for random stencil of given length
# Build mesh for random stencil of given length
mesh
=
self
.
_mesh_list
[
int
(
np
.
random
.
randint
(
mesh
=
self
.
_mesh_list
[
int
(
np
.
random
.
randint
(
3
,
high
=
9
,
size
=
1
))
-
3
].
random_stencil
(
self
.
_
stencil_length
)
3
,
high
=
9
,
size
=
1
))
-
3
].
random_stencil
(
stencil_length
)
# Induce adjustment to capture troubled cells
# Induce adjustment to capture troubled cells
adjustment
=
0
if
initial_condition
.
is_smooth
()
\
adjustment
=
0
if
initial_condition
.
is_smooth
()
\
else
mesh
.
non_ghost_cells
[
self
.
_
stencil_length
//
2
]
else
mesh
.
non_ghost_cells
[
stencil_length
//
2
]
initial_condition
.
induce_adjustment
(
-
mesh
.
cell_len
/
3
)
initial_condition
.
induce_adjustment
(
-
mesh
.
cell_len
/
3
)
# Calculate basis coefficients for stencil
# Calculate basis coefficients for stencil
...
@@ -226,7 +233,7 @@ class TrainingDataGenerator:
...
@@ -226,7 +233,7 @@ class TrainingDataGenerator:
input_data
[
i
]
=
self
.
_basis_list
[
input_data
[
i
]
=
self
.
_basis_list
[
polynomial_degree
].
calculate_cell_average
(
polynomial_degree
].
calculate_cell_average
(
projection
=
projection
[:,
1
:
-
1
],
projection
=
projection
[:,
1
:
-
1
],
stencil_length
=
self
.
_
stencil_length
,
stencil_length
=
stencil_length
,
add_reconstructions
=
add_reconstructions
)
add_reconstructions
=
add_reconstructions
)
count
+=
1
count
+=
1
...
...
This diff is collapsed.
Click to expand it.
workflows/ANN_data.smk
+
3
−
3
View file @
38895885
...
@@ -38,9 +38,9 @@ rule generate_data:
...
@@ -38,9 +38,9 @@ rule generate_data:
with open(str(log), 'w') as logfile:
with open(str(log), 'w') as logfile:
sys.stdout = logfile
sys.stdout = logfile
generator = ANN_Data_Generator.TrainingDataGenerator(
generator = ANN_Data_Generator.TrainingDataGenerator(
left_bound=params.left_bound, right_bound=params.right_bound,
left_bound=params.left_bound, right_bound=params.right_bound)
stencil_length=params.stencil_length)
data = generator.build_training_data(balance=params.balance,
data = generator.build_training_data(balance=params.balance,
initial_conditions=initial_conditions, directory=DIR,
initial_conditions=initial_conditions, directory=DIR,
num_samples=params.sample_number,
num_samples=params.sample_number,
add_reconstructions=params.reconstruction_flag)
add_reconstructions=params.reconstruction_flag,
\ No newline at end of file
stencil_length=params.stencil_length)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment