Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Troubled Cell Detection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Laura Christine Kühle
Troubled Cell Detection
Commits
36f233b4
Commit
36f233b4
authored
Dec 7, 2021
by
Laura Christine Kühle
Browse files
Options
Downloads
Patches
Plain Diff
Improved classification handling and plotting.
parent
b2e66543
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
ANN_Training.py
+17
-29
17 additions, 29 deletions
ANN_Training.py
Plotting.py
+31
-32
31 additions, 32 deletions
Plotting.py
with
48 additions
and
61 deletions
ANN_Training.py
+
17
−
29
View file @
36f233b4
...
@@ -11,7 +11,8 @@ TODO: Improve maximum selection runtime
...
@@ -11,7 +11,8 @@ TODO: Improve maximum selection runtime
TODO: Discuss if we want training accuracy/ROC in addition to CFV
TODO: Discuss if we want training accuracy/ROC in addition to CFV
TODO: Discuss whether to change output to binary
TODO: Discuss whether to change output to binary
TODO: Adapt TCD file to new classification
TODO: Adapt TCD file to new classification
TODO: Improve classification stat handling
TODO: Improve classification stat handling -> Done
TODO: Discuss automatic comparison between (non-)normalized data
"""
"""
import
numpy
as
np
import
numpy
as
np
...
@@ -129,7 +130,8 @@ class ModelTrainer(object):
...
@@ -129,7 +130,8 @@ class ModelTrainer(object):
# print(roc)
# print(roc)
# plt.plot(fpr, tpr, label="AUC="+str(auroc))
# plt.plot(fpr, tpr, label="AUC="+str(auroc))
return
[
precision
[
0
],
recall
[
0
],
accuracy
,
f_score
[
0
],
auroc
]
return
{
'
Precision
'
:
precision
[
0
],
'
Recall
'
:
recall
[
0
],
'
Accuracy
'
:
accuracy
,
'
F-Score
'
:
f_score
[
0
],
'
AUROC
'
:
auroc
}
def
save_model
(
self
):
def
save_model
(
self
):
# Saving Model
# Saving Model
...
@@ -143,8 +145,8 @@ class ModelTrainer(object):
...
@@ -143,8 +145,8 @@ class ModelTrainer(object):
torch
.
save
(
self
.
_model
.
state_dict
(),
model_dir
+
'
/model__
'
+
name
+
'
.pt
'
)
torch
.
save
(
self
.
_model
.
state_dict
(),
model_dir
+
'
/model__
'
+
name
+
'
.pt
'
)
torch
.
save
(
self
.
_validation_loss
,
model_dir
+
'
/loss__
'
+
name
+
'
.pt
'
)
torch
.
save
(
self
.
_validation_loss
,
model_dir
+
'
/loss__
'
+
name
+
'
.pt
'
)
def
_classify
(
self
):
#
def _classify(self):
pass
#
pass
def
read_training_data
(
directory
):
def
read_training_data
(
directory
):
...
@@ -154,10 +156,11 @@ def read_training_data(directory):
...
@@ -154,10 +156,11 @@ def read_training_data(directory):
return
TensorDataset
(
*
map
(
torch
.
tensor
,
(
np
.
load
(
input_file
),
np
.
load
(
output_file
))))
return
TensorDataset
(
*
map
(
torch
.
tensor
,
(
np
.
load
(
input_file
),
np
.
load
(
output_file
))))
def
evaluate_models
(
models
,
directory
,
num_iterations
=
100
):
def
evaluate_models
(
models
,
directory
,
num_iterations
=
100
,
measures
=
None
):
if
measures
is
None
:
measures
=
[
'
Accuracy
'
,
'
Precision
'
,
'
Recall
'
,
'
F-Score
'
,
'
AUROC
'
]
dataset
=
read_training_data
(
directory
)
dataset
=
read_training_data
(
directory
)
stats
=
[
'
Precision
'
,
'
Recall
'
,
'
Accuracy
'
,
'
F-Score
'
,
'
AUROC
'
]
classification_stats
=
{
measure
:
{
model
:
[]
for
model
in
models
}
for
measure
in
measures
}
classification_stats
=
{
model
:
{
name
:
[]
for
name
in
stats
}
for
model
in
models
}
for
iteration
in
range
(
num_iterations
):
for
iteration
in
range
(
num_iterations
):
for
train_index
,
test_index
in
KFold
(
n_splits
=
5
,
shuffle
=
True
).
split
(
dataset
):
for
train_index
,
test_index
in
KFold
(
n_splits
=
5
,
shuffle
=
True
).
split
(
dataset
):
# print("TRAIN:", train_index, "TEST:", test_index)
# print("TRAIN:", train_index, "TEST:", test_index)
...
@@ -166,28 +169,13 @@ def evaluate_models(models, directory, num_iterations=100):
...
@@ -166,28 +169,13 @@ def evaluate_models(models, directory, num_iterations=100):
for
model
in
models
:
for
model
in
models
:
result
=
models
[
model
].
test_model
(
training_set
,
test_set
)
result
=
models
[
model
].
test_model
(
training_set
,
test_set
)
count
=
0
for
measure
in
measures
:
for
stat
in
stats
:
classification_stats
[
measure
][
model
].
append
(
result
[
measure
])
classification_stats
[
model
][
stat
].
append
(
result
[
count
])
count
+=
1
plot_boxplot
(
models
.
keys
(),
classification_stats
)
classification_stats
=
{
measure
:
{
model
:
np
.
array
(
classification_stats
[
measure
][
model
]).
mean
()
# print(classification_stats)
for
model
in
models
}
for
measure
in
measures
}
# print(np.array(classification_stats).mean(axis=0))
plot_classification_accuracy
(
models
.
keys
(),
classification_stats
)
# print(np.array(classification_stats['Adam']['Precision']).shape)
# print(np.array([np.array(classification_stats[model]) for model in models]).transpose().shape)
# print(np.array([np.array(classification_stats[model]).transpose() for model in models]).shape)
# print(np.array([[classification_stats[model][stat] for model in models] for stat in stats]).shape)
# print(np.array([[np.array(classification_stats[model][stat]).mean(axis=0) for model in models] for stat in stats]).shape)
# print(np.array([*(np.array([[classification_stats[model][stat]
# for model in models] for stat in stats]))]).shape)
# print(*(np.array([[classification_stats[model][stat]
# for model in models] for stat in stats]))[0].shape)
plot_boxplot
(
models
.
keys
(),
*
(
np
.
array
([[
classification_stats
[
model
][
stat
]
for
model
in
models
]
for
stat
in
stats
])))
classification_stats
=
[[
np
.
array
(
classification_stats
[
model
][
stat
]).
mean
(
axis
=
0
)
for
model
in
models
]
for
stat
in
stats
]
# print(*classification_stats)
plot_classification_accuracy
(
models
.
keys
(),
*
classification_stats
)
# Set paths for plot files if not existing already
# Set paths for plot files if not existing already
plot_dir
=
directory
+
'
/model evaluation
'
plot_dir
=
directory
+
'
/model evaluation
'
...
...
This diff is collapsed.
Click to expand it.
Plotting.py
+
31
−
32
View file @
36f233b4
...
@@ -3,7 +3,8 @@
...
@@ -3,7 +3,8 @@
@author: Laura C. Kühle
@author: Laura C. Kühle
TODO: Give option to select plotting color
TODO: Give option to select plotting color
TODO: Improve classification plotting
TODO: Improve classification plotting -> Done
TODO: Add documentation to plot_boxplot()
"""
"""
import
numpy
as
np
import
numpy
as
np
...
@@ -236,7 +237,7 @@ def calculate_exact_solution(mesh, cell_len, wave_speed, final_time, interval_le
...
@@ -236,7 +237,7 @@ def calculate_exact_solution(mesh, cell_len, wave_speed, final_time, interval_le
return
grid
,
exact
return
grid
,
exact
def
plot_classification_accuracy
(
xlabels
,
precision
,
recall
,
accuracy
,
fscore
,
auroc
):
def
plot_classification_accuracy
(
model_names
,
evaluation_dict
):
"""
Plots classification accuracy.
"""
Plots classification accuracy.
Plots the accuracy, precision, and recall in a bar plot.
Plots the accuracy, precision, and recall in a bar plot.
...
@@ -253,52 +254,50 @@ def plot_classification_accuracy(xlabels, precision, recall, accuracy, fscore, a
...
@@ -253,52 +254,50 @@ def plot_classification_accuracy(xlabels, precision, recall, accuracy, fscore, a
List of strings for x-axis labels.
List of strings for x-axis labels.
"""
"""
pos
=
np
.
arange
(
len
(
xlabel
s
))
pos
=
np
.
arange
(
len
(
model_name
s
))
width
=
1
/
(
3
*
len
(
xlabel
s
))
width
=
1
/
(
3
*
len
(
model_name
s
))
fig
=
plt
.
figure
(
'
classification_accuracy
'
)
fig
=
plt
.
figure
(
'
classification_accuracy
'
)
ax
=
fig
.
add_axes
([
0.15
,
0.1
,
0.75
,
0.8
])
ax
=
fig
.
add_axes
([
0.15
,
0.1
,
0.75
,
0.8
])
ax
.
bar
(
pos
-
2
*
width
,
fscore
,
width
,
label
=
'
F-Score
'
)
step_len
=
1
ax
.
bar
(
pos
-
width
,
precision
,
width
,
label
=
'
Precision
'
)
adjustment
=
-
(
len
(
model_names
)
//
2
)
*
step_len
ax
.
bar
(
pos
,
recall
,
width
,
label
=
'
Recall
'
)
for
measure
in
evaluation_dict
:
ax
.
bar
(
pos
+
width
,
accuracy
,
width
,
label
=
'
Accuracy
'
)
model_eval
=
[
evaluation_dict
[
measure
][
model
]
for
model
in
evaluation_dict
[
measure
]]
ax
.
bar
(
pos
+
2
*
width
,
auroc
,
width
,
label
=
'
AUROC
'
)
ax
.
bar
(
pos
+
adjustment
*
width
,
model_eval
,
width
,
label
=
measure
)
adjustment
+=
step_len
ax
.
set_xticks
(
pos
)
ax
.
set_xticks
(
pos
)
ax
.
set_xticklabels
(
xlabel
s
)
ax
.
set_xticklabels
(
model_name
s
)
ax
.
set_ylabel
(
'
Classification (%)
'
)
ax
.
set_ylabel
(
'
Classification (%)
'
)
ax
.
set_ylim
(
bottom
=-
0.02
)
ax
.
set_ylim
(
bottom
=-
0.02
)
ax
.
set_ylim
(
top
=
1.02
)
ax
.
set_ylim
(
top
=
1.02
)
ax
.
set_title
(
'
Non-Normalized Test Data
'
)
ax
.
set_title
(
'
Classification Evaluation (Barplot)
'
)
ax
.
legend
(
loc
=
'
upper right
'
)
ax
.
legend
(
loc
=
'
upper right
'
)
# fig.tight_layout()
# fig.tight_layout()
def
plot_boxplot
(
xlabels
,
precision
,
recall
,
accuracy
,
fscore
,
auroc
):
def
plot_boxplot
(
model_names
,
evaluation_dict
):
fig
=
plt
.
figure
(
'
boxplot_accuracy
'
)
fig
=
plt
.
figure
(
'
boxplot_accuracy
'
)
pos
=
np
.
arange
(
len
(
xlabels
))
width
=
1
/
(
5
*
len
(
xlabels
))
ax
=
fig
.
add_axes
([
0.15
,
0.1
,
0.75
,
0.8
])
ax
=
fig
.
add_axes
([
0.15
,
0.1
,
0.75
,
0.8
])
step_len
=
1.5
boxplots
=
[]
boxplots
=
[]
boxplots
.
append
(
ax
.
boxplot
(
fscore
.
transpose
(),
positions
=
pos
-
3
*
width
,
widths
=
width
,
meanline
=
True
,
adjustment
=
-
(
len
(
model_names
)
//
2
)
*
step_len
showmeans
=
True
,
patch_artist
=
True
))
pos
=
np
.
arange
(
len
(
model_names
))
boxplots
.
append
(
ax
.
boxplot
(
precision
.
transpose
(),
positions
=
pos
-
1.5
*
width
,
widths
=
width
,
meanline
=
True
,
width
=
1
/
(
5
*
len
(
model_names
))
showmeans
=
True
,
patch_artist
=
True
))
boxplots
.
append
(
ax
.
boxplot
(
recall
.
transpose
(),
positions
=
pos
,
widths
=
width
,
meanline
=
True
,
showmeans
=
True
,
patch_artist
=
True
))
boxplots
.
append
(
ax
.
boxplot
(
accuracy
.
transpose
(),
positions
=
pos
+
1.5
*
width
,
widths
=
width
,
meanline
=
True
,
showmeans
=
True
,
patch_artist
=
True
))
boxplots
.
append
(
ax
.
boxplot
(
auroc
.
transpose
(),
positions
=
pos
+
3
*
width
,
widths
=
width
,
meanline
=
True
,
showmeans
=
True
,
patch_artist
=
True
))
count
=
0
colors
=
[
'
red
'
,
'
yellow
'
,
'
blue
'
,
'
tan
'
,
'
green
'
]
colors
=
[
'
red
'
,
'
yellow
'
,
'
blue
'
,
'
tan
'
,
'
green
'
]
for
bp
in
boxplots
:
count
=
0
for
patch
in
bp
[
'
boxes
'
]:
for
measure
in
evaluation_dict
:
model_eval
=
[
evaluation_dict
[
measure
][
model
]
for
model
in
evaluation_dict
[
measure
]]
boxplot
=
ax
.
boxplot
(
model_eval
,
positions
=
pos
+
adjustment
*
width
,
widths
=
width
,
meanline
=
True
,
showmeans
=
True
,
patch_artist
=
True
)
for
patch
in
boxplot
[
'
boxes
'
]:
patch
.
set
(
facecolor
=
colors
[
count
])
patch
.
set
(
facecolor
=
colors
[
count
])
boxplots
.
append
(
boxplot
)
count
+=
1
count
+=
1
adjustment
+=
step_len
ax
.
set_xticks
(
pos
)
ax
.
set_xticks
(
pos
)
ax
.
set_xticklabels
(
xlabel
s
)
ax
.
set_xticklabels
(
model_name
s
)
ax
.
set_ylim
(
bottom
=-
0.02
)
ax
.
set_ylim
(
bottom
=-
0.02
)
ax
.
set_ylim
(
top
=
1.02
)
ax
.
set_ylim
(
top
=
1.02
)
ax
.
set_ylabel
(
'
Classification (%)
'
)
ax
.
set_ylabel
(
'
Classification (%)
'
)
ax
.
set_title
(
'
Non-Normalized Test Data
'
)
ax
.
set_title
(
'
Classification Evaluation (Boxplot)
'
)
ax
.
legend
([
bp
[
"
boxes
"
][
0
]
for
bp
in
boxplots
],
ax
.
legend
([
bp
[
"
boxes
"
][
0
]
for
bp
in
boxplots
],
evaluation_dict
.
keys
(),
loc
=
'
upper right
'
)
[
'
F-Score
'
,
'
Precision
'
,
'
Recall
'
,
'
Accuracy
'
,
'
AUROC
'
],
loc
=
'
upper right
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment