Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Troubled Cell Detection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Laura Christine Kühle
Troubled Cell Detection
Commits
2c73fc5e
Commit
2c73fc5e
authored
Jan 25, 2022
by
Laura Christine Kühle
Browse files
Options
Downloads
Patches
Plain Diff
Improved log output for ANN training.
parent
fdbab2c1
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
ANN_Data_Generator.py
+2
-2
2 additions, 2 deletions
ANN_Data_Generator.py
ANN_Training.py
+37
-4
37 additions, 4 deletions
ANN_Training.py
with
39 additions
and
6 deletions
ANN_Data_Generator.py
+
2
−
2
View file @
2c73fc5e
...
...
@@ -96,7 +96,7 @@ class TrainingDataGenerator(object):
self
.
_save_data
(
data_dict
)
toc
=
time
.
perf_counter
()
print
(
'
Total runtime:
'
,
toc
-
tic
)
print
(
f
'
Total runtime:
{
toc
-
tic
:
0.4
f
}
s
'
)
return
data_dict
def
_calculate_data_set
(
self
,
num_samples
):
...
...
@@ -200,7 +200,7 @@ class TrainingDataGenerator(object):
toc
=
time
.
perf_counter
()
print
(
'
Finished calculating data
'
+
troubled_indicator
+
'
troubled cells!
'
)
print
(
'
Calculation time:
'
,
toc
-
tic
,
'
\n
'
)
print
(
f
'
Calculation time:
{
toc
-
tic
:
0.4
f
}
s
\n
'
)
# Set output data
output_data
=
np
.
zeros
((
num_samples
,
2
))
...
...
This diff is collapsed.
Click to expand it.
ANN_Training.py
+
37
−
4
View file @
2c73fc5e
...
...
@@ -8,11 +8,13 @@ Docstring-Style: D200, D400
TODO: Test new ANN set-up with Soraya
TODO: Remove object set-up (for more flexibility)
TODO: Add documentation
TODO: Improve log output
TODO: Improve log output
(timer, bit of text) -> Done
TODO: Throw exception for error due to missing classes
TODO: Allow multiple approximations in one config
"""
import
numpy
as
np
import
time
import
matplotlib
from
matplotlib
import
pyplot
as
plt
import
os
...
...
@@ -64,13 +66,16 @@ class ModelTrainer(object):
self
.
_model
.
parameters
(),
**
self
.
_optimizer_config
)
self
.
_validation_loss
=
torch
.
zeros
(
self
.
_num_epochs
//
10
)
def
epoch_training
(
self
,
dataset
=
None
,
num_epochs
=
None
):
def
epoch_training
(
self
,
dataset
=
None
,
num_epochs
=
None
,
verbose
=
True
):
tic
=
time
.
perf_counter
()
# Split data into training and validation set
if
dataset
is
None
:
dataset
=
self
.
_training_data
if
num_epochs
is
None
:
num_epochs
=
self
.
_num_epochs
num_samples
=
len
(
dataset
)
if
verbose
:
print
(
'
Splitting data randomly into training and validation set.
'
)
train_ds
,
valid_ds
=
random_split
(
dataset
,
[
round
(
num_samples
*
0.8
),
round
(
num_samples
*
0.2
)])
# Load sets
...
...
@@ -78,6 +83,10 @@ class ModelTrainer(object):
valid_dl
=
DataLoader
(
valid_ds
,
batch_size
=
self
.
_batch_size
*
2
)
# Training with Validation
if
verbose
:
print
(
'
\n
Training model...
'
)
print
(
'
Number of epochs:
'
,
num_epochs
)
tic_train
=
time
.
perf_counter
()
for
epoch
in
range
(
num_epochs
):
self
.
_model
.
train
()
for
x_batch
,
y_batch
in
train_dl
:
...
...
@@ -97,13 +106,21 @@ class ModelTrainer(object):
if
(
epoch
+
1
)
%
100
==
0
:
self
.
_validation_loss
[
int
((
epoch
+
1
)
/
100
)
-
1
]
=
valid_loss
/
len
(
valid_dl
)
print
(
epoch
+
1
,
valid_loss
/
len
(
valid_dl
))
if
verbose
:
print
(
epoch
+
1
,
'
epochs completed. Loss:
'
,
valid_loss
/
len
(
valid_dl
))
if
valid_loss
/
len
(
valid_dl
)
<
self
.
_threshold
:
break
toc_train
=
time
.
perf_counter
()
if
verbose
:
print
(
'
Finished training model!
'
)
print
(
f
'
Training time:
{
toc_train
-
tic_train
:
0.4
f
}
s
\n
'
)
toc
=
time
.
perf_counter
()
if
verbose
:
print
(
f
'
Total runtime:
{
toc
-
tic
:
0.4
f
}
s
\n
'
)
def
test_model
(
self
,
training_set
,
test_set
):
self
.
epoch_training
(
training_set
,
num_epochs
=
100
)
self
.
epoch_training
(
training_set
,
num_epochs
=
100
,
verbose
=
False
)
self
.
_model
.
eval
()
x_test
,
y_test
=
test_set
...
...
@@ -143,17 +160,24 @@ def read_training_data(directory, normalized=True):
def
evaluate_models
(
models
,
directory
,
num_iterations
=
100
,
colors
=
None
,
compare_normalization
=
False
):
tic
=
time
.
perf_counter
()
if
colors
is
None
:
colors
=
{
'
Accuracy
'
:
'
magenta
'
,
'
Precision_Smooth
'
:
'
red
'
,
'
Precision_Troubled
'
:
'
#8B0000
'
,
'
Recall_Smooth
'
:
'
blue
'
,
'
Recall_Troubled
'
:
'
#00008B
'
,
'
F-Score_Smooth
'
:
'
green
'
,
'
F-Score_Troubled
'
:
'
#006400
'
,
'
AUROC
'
:
'
yellow
'
}
print
(
'
Read normalized training data.
'
)
datasets
=
{
'
normalized
'
:
read_training_data
(
directory
)}
if
compare_normalization
:
print
(
'
Read raw, non-normalized training data.
'
)
datasets
[
'
raw
'
]
=
read_training_data
(
directory
,
False
)
classification_stats
=
{
measure
:
{
model
+
'
(
'
+
dataset
+
'
)
'
:
[]
for
model
in
models
for
dataset
in
datasets
}
for
measure
in
colors
}
print
(
'
\n
Training models with 5-fold cross validation...
'
)
print
(
'
Number of iterations:
'
,
num_iterations
)
tic_train
=
time
.
perf_counter
()
for
iteration
in
range
(
num_iterations
):
for
train_index
,
test_index
in
KFold
(
n_splits
=
5
,
shuffle
=
True
).
split
(
datasets
[
'
normalized
'
]):
...
...
@@ -166,7 +190,13 @@ def evaluate_models(models, directory, num_iterations=100, colors=None,
for
measure
in
colors
:
classification_stats
[
measure
][
model
+
'
(
'
+
dataset
+
'
)
'
].
append
(
result
[
measure
])
if
iteration
+
1
%
max
(
10
,
10
*
(
num_iterations
//
100
)):
print
(
iteration
+
1
,
'
iterations completed.
'
)
toc_train
=
time
.
perf_counter
()
print
(
'
Finished training models with 5-fold cross validation!
'
)
print
(
f
'
Training time:
{
toc_train
-
tic_train
:
0.4
f
}
s
\n
'
)
print
(
'
Plotting evaluation of trained models.
'
)
plot_boxplot
(
classification_stats
,
colors
)
classification_stats
=
{
measure
:
{
model
+
'
(
'
+
dataset
+
'
)
'
:
np
.
array
(
classification_stats
[
measure
][
model
+
'
(
'
+
dataset
+
'
)
'
]).
mean
()
for
model
in
models
...
...
@@ -179,6 +209,7 @@ def evaluate_models(models, directory, num_iterations=100, colors=None,
os
.
makedirs
(
plot_dir
)
# Save plots
print
(
'
Saving plots.
'
)
for
identifier
in
plt
.
get_figlabels
():
# Set path for figure directory if not existing already
if
not
os
.
path
.
exists
(
plot_dir
+
'
/
'
+
identifier
):
...
...
@@ -186,3 +217,5 @@ def evaluate_models(models, directory, num_iterations=100, colors=None,
plt
.
figure
(
identifier
)
plt
.
savefig
(
plot_dir
+
'
/
'
+
identifier
+
'
/
'
+
'
_
'
.
join
(
models
.
keys
())
+
'
.pdf
'
)
toc
=
time
.
perf_counter
()
print
(
f
'
Total runtime:
{
toc
-
tic
:
0.4
f
}
s
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment