Skip to content
Snippets Groups Projects
Commit 210bdde1 authored by Laura Christine Kühle's avatar Laura Christine Kühle
Browse files

Upload Vectors_of_Polynomials.py (as of March 16 2020)

parent 6c9f4f80
Branches
No related tags found
No related merge requests found
# -*- coding: utf-8 -*-
"""
@author: Laura C. Kühle
"""
import numpy as np
class Vector(object):
def __init__(self, polynom_degree):
self.polynom_degree = polynom_degree
pass
def get_vector(self):
pass
class Legendre(Vector):
def get_vector(self, eval_point):
vector = self._calculate_legendre_vector(eval_point)
return vector
def _calculate_legendre_vector(self, eval_point):
vector = []
for degree in range(self.polynom_degree+1):
if (degree == 0):
vector.append(1.0 + 0*eval_point)
else:
if (degree == 1):
vector.append(eval_point)
else:
poly = (2.0*degree - 1) / degree\
* eval_point * vector[len(vector)-1]\
- (degree-1) / degree * vector[len(vector)-2]
vector.append(poly)
return vector
class OrthonormalLegendre(Legendre):
def get_vector(self, eval_point):
leg_vector = self._calculate_legendre_vector(eval_point)
vector = [leg_vector[degree] * np.sqrt(degree+0.5)
for degree in range(len(leg_vector))]
return vector
class AlpertsWavelet(Vector):
def get_vector(self, eval_point):
degree = self.polynom_degree
if (degree == 0):
return [np.sqrt(0.5) + eval_point*0]
if (degree == 1):
return [np.sqrt(1.5) * (-1 + 2*eval_point),
np.sqrt(0.5) * (-2 + 3*eval_point)]
if (degree == 2):
return [1/3 * np.sqrt(0.5)
* (1 - 24*eval_point + 30*(eval_point**2)),
1/2 * np.sqrt(1.5)
* (3 - 16*eval_point + 15*(eval_point**2)),
1/3 * np.sqrt(2.5)
* (4 - 15*eval_point + 12*(eval_point**2))]
if (degree == 3):
return [np.sqrt(15/34) * (1 + 4*eval_point
- 30*(eval_point**2) + 28*(eval_point**3)),
np.sqrt(1/42) * (-4 + 105 * eval_point
- 300*(eval_point**2) + 210*(eval_point**3)),
1/2 * np.sqrt(35/34) * (-5 + 48*eval_point
- 105*(eval_point**2) + 64*(eval_point**3)),
1/2 * np.sqrt(5/34) * (-16 + 105*eval_point
- 192*(eval_point**2) + 105*(eval_point**3))]
if (degree == 4):
return [np.sqrt(1/186) * (1 + 30*eval_point + 210*(eval_point**2)
- 840*(eval_point**3) + 630*(eval_point**4)),
0.5 * np.sqrt(1/38) * (-5 - 144*eval_point
+ 1155*(eval_point**2) - 2240*(eval_point**3)
+ 1260*(eval_point**4)),
np.sqrt(35/14694) * (22 - 735*eval_point
+ 3504*(eval_point**2) - 5460*(eval_point**3)
+ 2700*(eval_point**4)),
1/8 * np.sqrt(21/38) * (35 - 512*eval_point
+ 1890*(eval_point**2) - 2560*(eval_point**3)
+ 1155*(eval_point**4)),
0.5 * np.sqrt(7/158) * (32 - 315*eval_point
+ 960*(eval_point**2) - 1155*(eval_point**3)
+ 480*(eval_point**4))]
raise ValueError('Invalid value: Albert\'s wavelet is only available \
up to degree 4 for this application')
return 0
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment