Select Git revision
DG_Approximation.py
-
Laura Christine Kühle authoredLaura Christine Kühle authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
DG_Approximation.py 16.87 KiB
# -*- coding: utf-8 -*-
"""
@author: Laura C. Kühle
Urgent:
TODO: Extract do_initial_projection() from DGScheme -> Done
TODO: Move inverse mass matrix to basis
TODO: Extract calculate_cell_average() from TCD
TODO: Extract calculate_[...]_solution() from Plotting
TODO: Extract plotting from TCD completely
(maybe give indicator which plots are required instead?)
TODO: Contain all plotting in Plotting
TODO: Remove use of DGScheme from ANN_Data_Generator
TODO: Adapt TCD from Soraya
(Dropbox->...->TEST_troubled-cell-detector->Troubled_Cell_Detector)
TODO: Add verbose output
TODO: Improve file naming (e.g. use '.' instead of '__')
TODO: Combine ANN workflows
TODO: Add an environment file for Snakemake
Critical, but not urgent:
TODO: Force input_size for each ANN model to be stencil length
TODO: Use full path for ANN model state
TODO: Enforce abstract classes/methods (abc.ABC, abc.abstractmethod)
TODO: Extract object initialization from DGScheme
TODO: Use cfl_number for updating, not just time
Currently not critical:
TODO: Unify use of 'length' and 'len' in naming
TODO: Replace loops with list comprehension if feasible
TODO: Check whether 'projection' is always a np.array()
TODO: Check whether all instance variables are sensible
TODO: Rename files according to standard
TODO: Outsource scripts into separate directory
TODO: Allow comparison between ANN training datasets
TODO: Add a default model state
TODO: Look into validators for variable checks
Not feasible yet or doc-related:
TODO: Adjust code to allow classes for all equations
(Burger, linear advection, 1D Euler)
TODO: Double-check everything! (also with pylint, pytype, pydoc,
pycodestyle, pydocstyle)
TODO: Check whether documentation style is correct
TODO: Check whether all types in doc are correct
TODO: Discuss adding kwargs to attributes in documentation
TODO: Add type annotations to function heads
"""
import os
import json
import numpy as np
from sympy import Symbol
import math
import matplotlib
from matplotlib import pyplot as plt
import Troubled_Cell_Detector
import Initial_Condition
import Limiter
import Quadrature
import Update_Scheme
from Basis_Function import OrthonormalLegendre
matplotlib.use('Agg')
x = Symbol('x')
def encode_ndarray(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return obj
def decode_ndarray(obj):
if isinstance(obj, list):
return np.asarray(obj)
return obj
class DGScheme:
"""Class for Discontinuous Galerkin Method.
Approximates linear advection equation using Discontinuous Galerkin Method
with troubled-cell-based limiting.
Attributes
----------
interval_len : float
Length of the interval between left and right boundary.
cell_len : float
Length of a cell in mesh.
basis : Basis object
Basis for calculation.
mesh : ndarray
List of mesh valuation points.
inv_mass : ndarray
Inverse mass matrix.
Methods
-------
approximate()
Approximates projection.
save_plots()
Saves plots generated during approximation process.
build_training_data(adjustment, stencil_length, initial_condition=None)
Builds training data set.
"""
def __init__(self, detector, **kwargs):
"""Initializes DGScheme.
Parameters
----------
detector : str
Name of troubled cell detector class.
Other Parameters
----------------
wave_speed : float, optional
Speed of wave in rightward direction. Default: 1.
polynomial_degree : int, optional
Polynomial degree. Default: 2.
cfl_number : float, optional
CFL number to ensure stability. Default: 0.2.
num_grid_cells : int, optional
Number of cells in the mesh. Usually exponential of 2. Default: 64.
final_time : float, optional
Final time for which approximation is calculated. Default: 1.
left_bound : float, optional
Left boundary of interval. Default: -1.
right_bound : float, optional
Right boundary of interval. Default: 1.
verbose : bool, optional
Flag whether commentary in console is wanted. Default: False.
history_threshold : float, optional
Threshold when history will be recorded.
Default: math.ceil(0.2/cfl_number).
detector_config : dict, optional
Additional parameters for detector object. Default: {}.
init_cond : str, optional
Name of initial condition for evaluation. Default: 'Sine'
init_config : dict, optional
Additional parameters for initial condition object. Default: {}.
limiter : str, optional
Name of limiter for evaluation. Default: 'ModifiedMinMod'.
limiter_config : dict, optional
Additional parameters for limiter. object. Default: {}:
quadrature : str, optional
Name of quadrature for evaluation. Default: 'Gauss'.
quadrature_config : dict, optional
Additional parameters for quadrature object. Default: {}.
update_scheme : str, optional
Name of update scheme for evaluation. Default: 'SSPRK3'.
"""
# Unpack keyword arguments
self._wave_speed = kwargs.pop('wave_speed', 1)
self._polynomial_degree = kwargs.pop('polynomial_degree', 2)
self._cfl_number = kwargs.pop('cfl_number', 0.2)
self._num_grid_cells = kwargs.pop('num_grid_cells', 64)
self._final_time = kwargs.pop('final_time', 1)
self._left_bound = kwargs.pop('left_bound', -1)
self._right_bound = kwargs.pop('right_bound', 1)
self._verbose = kwargs.pop('verbose', False)
self._history_threshold = kwargs.pop('history_threshold',
math.ceil(0.2/self._cfl_number))
self._detector = detector
self._detector_config = kwargs.pop('detector_config', {})
self._init_cond = kwargs.pop('init_cond', 'Sine')
self._init_config = kwargs.pop('init_config', {})
self._limiter = kwargs.pop('limiter', 'ModifiedMinMod')
self._limiter_config = kwargs.pop('limiter_config', {})
self._quadrature = kwargs.pop('quadrature', 'Gauss')
self._quadrature_config = kwargs.pop('quadrature_config', {})
self._update_scheme = kwargs.pop('update_scheme', 'SSPRK3')
# Throw an error if there are extra keyword arguments
if len(kwargs) > 0:
extra = ', '.join('"%s"' % k for k in list(kwargs.keys()))
raise ValueError('Unrecognized arguments: %s' % extra)
# Make sure all classes actually exist
if not hasattr(Troubled_Cell_Detector, self._detector):
raise ValueError('Invalid detector: "%s"' % self._detector)
if not hasattr(Initial_Condition, self._init_cond):
raise ValueError('Invalid initial condition: "%s"'
% self._init_cond)
if not hasattr(Limiter, self._limiter):
raise ValueError('Invalid limiter: "%s"' % self._limiter)
if not hasattr(Quadrature, self._quadrature):
raise ValueError('Invalid quadrature: "%s"' % self._quadrature)
if not hasattr(Update_Scheme, self._update_scheme):
raise ValueError('Invalid update scheme: "%s"'
% self._update_scheme)
self._reset()
# Replace the string names with the actual class instances
# (and add the instance variables for the quadrature)
self._init_cond = getattr(Initial_Condition, self._init_cond)(
left_bound=self._left_bound, right_bound=self._right_bound,
config=self._init_config)
self._limiter = getattr(Limiter, self._limiter)(
config=self._limiter_config)
self._quadrature = getattr(Quadrature, self._quadrature)(
config=self._quadrature_config)
self._detector = getattr(Troubled_Cell_Detector, self._detector)(
config=self._detector_config, mesh=self._mesh,
wave_speed=self._wave_speed, num_grid_cells=self._num_grid_cells,
polynomial_degree=self._polynomial_degree,
final_time=self._final_time, left_bound=self._left_bound,
right_bound=self._right_bound, basis=self._basis,
init_cond=self._init_cond, quadrature=self._quadrature)
self._update_scheme = getattr(Update_Scheme, self._update_scheme)(
polynomial_degree=self._polynomial_degree,
num_grid_cells=self._num_grid_cells, detector=self._detector,
limiter=self._limiter)
def approximate(self, data_file):
"""Approximates projection.
Initializes projection and evolves it in time. Each time step consists
of three parts: A projection update, a troubled-cell detection,
and limiting based on the detected cells.
At final time, results are saved in JSON file.
Attributes
----------
data_file: str
Path to file in which data will be saved.
"""
projection = do_initial_projection(
initial_condition=self._init_cond, basis=self._basis,
quadrature=self._quadrature, num_grid_cells=self._num_grid_cells,
left_bound=self._left_bound, right_bound=self._right_bound,
polynomial_degree=self._polynomial_degree)
time_step = abs(self._cfl_number * self._cell_len / self._wave_speed)
current_time = 0
iteration = 0
troubled_cell_history = []
time_history = []
while current_time < self._final_time:
# Adjust for last cell
cfl_number = self._cfl_number
if current_time+time_step > self._final_time:
time_step = self._final_time-current_time
cfl_number = self._wave_speed * time_step / self._cell_len
# Update projection
projection, troubled_cells = self._update_scheme.step(projection,
cfl_number)
iteration += 1
if (iteration % self._history_threshold) == 0:
troubled_cell_history.append(troubled_cells)
time_history.append(current_time)
current_time += time_step
# Save approximation results in dictionary
approx_stats = {'projection': projection, 'time_history': time_history,
'troubled_cell_history': troubled_cell_history}
# Encode all ndarrays to fit JSON format
approx_stats = {key: encode_ndarray(approx_stats[key])
for key in approx_stats.keys()}
# Save approximation results in JSON format
with open(data_file + '.json', 'w') \
as json_file:
json_file.write(json.dumps(approx_stats))
def _reset(self):
"""Resets instance variables."""
# Set additional necessary instance variables
self._interval_len = self._right_bound-self._left_bound
self._cell_len = self._interval_len / self._num_grid_cells
self._basis = OrthonormalLegendre(self._polynomial_degree)
# Set additional necessary config parameters
self._limiter_config['cell_len'] = self._cell_len
# Set mesh with one ghost point on each side
self._mesh = np.arange(self._left_bound - (3/2*self._cell_len),
self._right_bound + (5/2*self._cell_len),
self._cell_len) # +3/2
def build_training_data(self, adjustment, stencil_length,
add_reconstructions, initial_condition=None):
"""Builds training data set.
Initializes projection and calculates cell averages and
reconstructions for it.
Parameters
----------
adjustment : float
Extent of adjustment of each evaluation point in x-direction.
stencil_length : int
Size of training data array.
add_reconstructions: bool
Flag whether reconstructions of the middle cell are included.
initial_condition : InitialCondition object, optional
Initial condition used for calculation.
Default: None (i.e. instance variable).
Returns
-------
ndarray
Matrix containing cell averages and reconstructions for initial
projection.
"""
if initial_condition is None:
initial_condition = self._init_cond
projection = do_initial_projection(
initial_condition=initial_condition, basis=self._basis,
quadrature=self._quadrature, num_grid_cells=self._num_grid_cells,
left_bound=self._left_bound, right_bound=self._right_bound,
polynomial_degree=self._polynomial_degree, adjustment=adjustment)
return self._detector.calculate_cell_average(projection[:, 1:-1],
stencil_length,
add_reconstructions)
def do_initial_projection(initial_condition, basis, quadrature,
num_grid_cells, left_bound, right_bound,
polynomial_degree, adjustment=0):
"""Calculates initial projection.
Calculates a projection at time step 0 and adds ghost cells on both
sides of the array.
Parameters
----------
initial_condition : InitialCondition object
Initial condition used for calculation.
basis: Vector object
Basis used for calculation.
quadrature: Quadrature object
Quadrature fused for evaluation.
num_grid_cells : int
Number of cells in the mesh. Usually exponential of 2.
left_bound : float
Left boundary of interval.
right_bound : float
Right boundary of interval.
polynomial_degree : int
Polynomial degree.
adjustment: float, optional
Extent of adjustment of each evaluation point in x-direction.
Default: 0.
Returns
-------
ndarray
Matrix containing projection of size (N+2, p+1) with N being the
number of grid cells and p being the polynomial degree.
"""
# Set inverse mass matrix
mass_matrix = []
for i in range(polynomial_degree+1):
new_row = []
for j in range(polynomial_degree+1):
new_entry = 0.0
if i == j:
new_entry = 1.0
new_row.append(new_entry)
mass_matrix.append(new_row)
inv_mass = np.array(mass_matrix)
# Initialize matrix and set first entry to accommodate for ghost cell
output_matrix = [0]
basis_vector = basis.get_basis_vector()
cell_len = (right_bound-left_bound)/num_grid_cells
for cell in range(num_grid_cells):
new_row = []
eval_point = left_bound + (cell+0.5)*cell_len
for degree in range(polynomial_degree + 1):
new_entry = sum(
initial_condition.calculate(
eval_point + cell_len/2
* quadrature.get_eval_points()[point]
- adjustment)
* basis_vector[degree].subs(
x, quadrature.get_eval_points()[point])
* quadrature.get_weights()[point]
for point in range(quadrature.get_num_points()))
new_row.append(np.float64(new_entry))
new_row = np.array(new_row)
output_matrix.append(inv_mass @ new_row)
# Set ghost cells to respective value
output_matrix[0] = output_matrix[num_grid_cells]
output_matrix.append(output_matrix[1])
# print(np.array(output_matrix).shape)
return np.transpose(np.array(output_matrix))
def plot_approximation_results(detector, data_file, directory, plot_name):
"""Plots given approximation results.
Generates plots based on given data, sets plot directory if not
already existing, and saves plots.
Parameters
----------
data_file: str
Path to data file for plotting.
directory: str
Path to directory in which plots will be saved.
plot_name : str
Name of plot.
"""
# Read approximation results
with open(data_file + '.json') as json_file:
approx_stats = json.load(json_file)
# Decode all ndarrays by converting lists
approx_stats = {key: decode_ndarray(approx_stats[key])
for key in approx_stats.keys()}
# Plot exact/approximate results, errors, shock tubes,
# and any detector-dependant plots
detector.plot_results(**approx_stats)
# Set paths for plot files if not existing already
if not os.path.exists(directory):
os.makedirs(directory)
# Save plots
for identifier in plt.get_figlabels():
# Set path for figure directory if not existing already
if not os.path.exists(directory + '/' + identifier):
os.makedirs(directory + '/' + identifier)
plt.figure(identifier)
plt.savefig(directory + '/' + identifier + '/' +
plot_name + '.pdf')