Select Git revision
Update_Scheme.py
-
Laura Christine Kühle authoredLaura Christine Kühle authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Update_Scheme.py 5.74 KiB
# -*- coding: utf-8 -*-
"""
@author: Laura C. Kühle
d = detail coefficient (rename?)
other A (from M) = ? (Is it the same???)
A = basis_projection_left
M1 = wavelet_projection_left
phi = DG basis vector
psi = wavelet vector
TODO: Find better names for A, B, M1, and M2
"""
import numpy as np
import timeit
class UpdateScheme(object):
def __init__(self, detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time,
history_threshold, left_bound, right_bound):
# Unpack positional arguments
self.detector = detector
self.limiter = limiter
self.init_cond = init_cond
self.mesh = mesh
self.wave_speed = wave_speed
self.polynom_degree = polynom_degree
self.num_grid_cells = num_grid_cells
self.final_time = final_time
self.history_threshold = history_threshold
self.left_bound = left_bound
self.right_bound = right_bound
self._reset()
def get_name(self):
return self.name
def get_troubled_cell_history(self):
return self.troubled_cell_history
def get_time_history(self):
return self.time_history
def step(self, projection, cfl_number, current_time):
self.original_projection = projection
self.current_projection = projection
self.cfl_number = cfl_number
self.time = current_time
self._apply_stability_method()
self.iteration += 1
if (self.iteration % self.history_threshold) == 0:
self.troubled_cell_history.append(self.troubled_cells)
self.time_history.append(self.time)
return self.current_projection, self.troubled_cells
def _apply_stability_method(self):
pass
def _reset(self):
# Set additional necessary fixed instance variables
self.name = 'None'
self.interval_len = self.right_bound-self.left_bound
self.cell_len = self.interval_len / self.num_grid_cells
# Set matrix A
matrix = []
for i in range(self.polynom_degree+1):
new_row = []
for j in range(self.polynom_degree+1):
new_entry = -1.0
if (j < i) & ((i+j) % 2 == 1):
new_entry = 1.0
new_row.append(new_entry*np.sqrt((i+0.5) * (j+0.5)))
matrix.append(new_row)
self.A = np.array(matrix) # former: inv_mass @ np.array(matrix)
# Set matrix B
matrix = []
for i in range(self.polynom_degree+1):
new_row = []
for j in range(self.polynom_degree+1):
new_entry = np.sqrt((i+0.5) * (j+0.5)) * (-1.0)**i
new_row.append(new_entry)
matrix.append(new_row)
self.B = np.array(matrix) # former: inv_mass @ np.array(matrix)
# Initialize temporary instance variables
self.original_projection = []
self.current_projection = []
self.right_hand_side = []
self.troubled_cells = []
self.troubled_cell_history = []
self.time_history = []
self.cfl_number = 0
self.time = 0
self.iteration = 0
def _apply_limiter(self):
self.troubled_cells = self.detector.get_cells(self.current_projection)
new_projection = self.current_projection.copy()
for cell in self.troubled_cells:
new_projection[:, cell] = self.limiter.apply(self.current_projection, cell)
self.current_projection = new_projection
def _enforce_boundary_condition(self):
self.current_projection[:, 0] = self.current_projection[:, self.num_grid_cells]
self.current_projection[:, self.num_grid_cells+1] = self.current_projection[:, 1]
class SSPRK3(UpdateScheme):
def __init__(self, detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time,
history_threshold, left_bound, right_bound):
super().__init__(detector, limiter, init_cond, mesh, wave_speed, polynom_degree, num_grid_cells, final_time,
history_threshold, left_bound, right_bound)
# Set name of update scheme
self.name = 'SSPRK3'
# Override method of superclass
def _apply_stability_method(self):
self._apply_first_step()
self._apply_limiter()
self._enforce_boundary_condition()
self._apply_second_step()
self._apply_limiter()
self._enforce_boundary_condition()
self._apply_third_step()
self._apply_limiter()
self._enforce_boundary_condition()
def _update_right_hand_side(self):
# Initialize vector and set first entry to accommodate for ghost cell
right_hand_side = [0]
for j in range(self.num_grid_cells):
right_hand_side.append(2*(self.A @ self.current_projection[:, j+1]
+ self.B @ self.current_projection[:, j]))
# Set ghost cells to respective value
right_hand_side[0] = right_hand_side[self.num_grid_cells]
right_hand_side.append(right_hand_side[1])
self.right_hand_side = np.transpose(right_hand_side)
def _apply_first_step(self):
self._update_right_hand_side()
self.current_projection = self.original_projection + (self.cfl_number*self.right_hand_side)
def _apply_second_step(self):
self._update_right_hand_side()
self.current_projection = 1/4 * (3 * self.original_projection
+ (self.current_projection + self.cfl_number*self.right_hand_side))
def _apply_third_step(self):
self._update_right_hand_side()
self.current_projection = 1/3 * (self.original_projection
+ 2 * (self.current_projection + self.cfl_number*self.right_hand_side))