Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
1 result

ANN_Data_Generator.py

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    Update_Scheme.py NaN GiB
    # -*- coding: utf-8 -*-
    """
    @author: Laura C. Kühle
    
    TODO: Discuss descriptions (matrices, cfl number, right-hand side,
        limiting slope, basis, wavelet, etc.)
    TODO: Discuss referencing info on SSPRK3
    
    """
    from abc import ABC, abstractmethod
    import numpy as np
    import time
    
    
    class UpdateScheme(ABC):
        """Abstract class for updating projections at a time step.
    
        Attributes
        ----------
        stiffness_matrix : ndarray
            Matrix
        boundary_matrix : ndarray
            Matrix
    
        Methods
        -------
        get_name()
            Returns string of class name.
        step(projection, cfl_number)
            Performs time step.
    
        """
        def __init__(self, polynomial_degree, num_grid_cells, detector, limiter):
            """Initializes UpdateScheme.
    
            Parameters
            ----------
            polynomial_degree : int
                Polynomial degree.
            num_grid_cells : int
                Number of cells in the mesh. Usually exponential of 2.
            detector : TroubledCellDetector object
                Troubled cell detector for evaluation.
            limiter : Limiter object
                Limiter for evaluation.
    
            """
            # Unpack positional arguments
            self._polynomial_degree = polynomial_degree
            self._num_grid_cells = num_grid_cells
            self._detector = detector
            self._limiter = limiter
    
            self._reset()
    
        def _reset(self):
            """Resets instance variables."""
            # Set stiffness matrix
            matrix = []
            for i in range(self._polynomial_degree+1):
                new_row = []
                for j in range(self._polynomial_degree+1):
                    new_entry = -1.0
                    if (j < i) & ((i+j) % 2 == 1):
                        new_entry = 1.0
                    new_row.append(new_entry*np.sqrt((i+0.5) * (j+0.5)))
                matrix.append(new_row)
            self._stiffness_matrix = np.array(matrix)
            # former: inv_mass @ np.array(matrix)
    
            # Set boundary matrix
            matrix = []
            for i in range(self._polynomial_degree+1):
                new_row = []
                for j in range(self._polynomial_degree+1):
                    new_entry = np.sqrt((i+0.5) * (j+0.5)) * (-1.0)**i
                    new_row.append(new_entry)
                matrix.append(new_row)
            self._boundary_matrix = np.array(matrix)
            # former: inv_mass @ np.array(matrix)
    
        def get_name(self):
            """Returns string of class name."""
            return self.__class__.__name__
    
        def step(self, projection, cfl_number):
            """Performs time step.
    
            Parameters
            ----------
            projection : ndarray
                Matrix of projection for each polynomial degree.
            cfl_number : float
                CFL number to ensure stability.
    
            Returns
            -------
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
            troubled_cells : list
                List of indices for all detected troubled cells.
    
            """
            current_projection, troubled_cells = self._apply_stability_method(
                projection, cfl_number)
    
            return current_projection, troubled_cells
    
        @abstractmethod
        def _apply_stability_method(self, projection, cfl_number):
            """Applies stability method.
    
            Parameters
            ----------
            projection : ndarray
                Matrix of projection for each polynomial degree.
            cfl_number : float
                CFL number to ensure stability.
    
            Returns
            -------
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
            troubled_cells : list
                List of indices for all detected troubled cells.
    
            """
            pass
    
        def _apply_limiter(self, current_projection):
            """Applies limiter on troubled cells.
    
            Parameters
            ----------
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
    
            Returns
            -------
            new_projection : ndarray
                Matrix of updated projection for each polynomial degree.
            troubled_cells : list
                List of indices for all detected troubled cells.
    
            """
            troubled_cells = self._detector.get_cells(current_projection)
    
            new_projection = current_projection.copy()
            for cell in troubled_cells:
                new_projection[:,  cell] = self._limiter.apply(current_projection,
                                                               cell)
    
            return new_projection, troubled_cells
    
        def _enforce_boundary_condition(self, current_projection):
            """Enforces boundary condition.
    
            Adjusts ghost cells to ensure periodic boundary condition.
    
            Parameters
            ----------
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
    
            Returns
            -------
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
    
            """
            current_projection[:, 0] = current_projection[:, self._num_grid_cells]
            current_projection[:, self._num_grid_cells+1] \
                = current_projection[:, 1]
            return current_projection
    
    
    class SSPRK3(UpdateScheme):
        """Class for strong stability-preserving Runge Kutta of order 3.
    
        Notes
        -----
        Reference (?)
    
        """
        # Override method of superclass
        def _apply_stability_method(self, projection, cfl_number):
            """Applies stability method.
    
            Parameters
            ----------
            projection : ndarray
                Matrix of projection for each polynomial degree.
            cfl_number : float
                CFL number to ensure stability.
    
            Returns
            -------
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
            troubled_cells : list
                List of indices for all detected troubled cells.
    
            """
            original_projection = projection
    
            current_projection = self._apply_first_step(original_projection,
                                                        cfl_number)
            current_projection, __ = self._apply_limiter(current_projection)
            current_projection = self._enforce_boundary_condition(
                current_projection)
    
            current_projection = self._apply_second_step(original_projection,
                                                         current_projection,
                                                         cfl_number)
            current_projection, __ = self._apply_limiter(current_projection)
            current_projection = self._enforce_boundary_condition(
                current_projection)
    
            current_projection = self._apply_third_step(original_projection,
                                                        current_projection,
                                                        cfl_number)
            current_projection, troubled_cells = self._apply_limiter(
                current_projection)
            current_projection = self._enforce_boundary_condition(
                current_projection)
    
            return current_projection, troubled_cells
    
        def _apply_first_step(self, original_projection, cfl_number):
            """Applies first step of SSPRK3.
    
            Parameters
            ----------
            original_projection : ndarray
                Matrix of original projection for each polynomial degree.
            cfl_number : float
                CFL number to ensure stability.
    
            Returns
            -------
            ndarray
                Matrix of updated projection for each polynomial degree.
    
            """
            right_hand_side = self._update_right_hand_side(original_projection)
            return original_projection + (cfl_number*right_hand_side)
    
        def _apply_second_step(self, original_projection, current_projection,
                               cfl_number):
            """Applies second step of SSPRK3.
    
            Parameters
            ----------
            original_projection : ndarray
                Matrix of original projection for each polynomial degree.
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
            cfl_number : float
                CFL number to ensure stability.
    
            Returns
            -------
            ndarray
                Matrix of updated projection for each polynomial degree.
    
            """
            right_hand_side = self._update_right_hand_side(current_projection)
            return 1/4 * (3*original_projection
                          + (current_projection + cfl_number*right_hand_side))
    
        def _apply_third_step(self, original_projection, current_projection,
                              cfl_number):
            """Applies third step of SSPRK3.
    
            Parameter
            ---------
            original_projection : ndarray
                Matrix of original projection for each polynomial degree.
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
            cfl_number : float
                CFL number to ensure stability.
    
            Returns
            -------
            ndarray
                Matrix of updated projection for each polynomial degree.
    
            """
            right_hand_side = self._update_right_hand_side(current_projection)
            return 1/3 * (original_projection
                          + 2*(current_projection + cfl_number*right_hand_side))
    
        def _update_right_hand_side(self, current_projection):
            """Updates right-hand side.
    
            Parameter
            ---------
            current_projection : ndarray
                Matrix of projection of current update step for each polynomial
                degree.
    
            Returns
            -------
            ndarray
                Matrix of right-hand side.
    
            """
            # Initialize vector and set first entry to accommodate for ghost cell
            right_hand_side = [0]
    
            for j in range(self._num_grid_cells):
                right_hand_side.append(2*(self._stiffness_matrix
                                          @ current_projection[:, j+1]
                                          + self._boundary_matrix
                                          @ current_projection[:, j]))
    
            # Set ghost cells to respective value
            right_hand_side[0] = right_hand_side[self._num_grid_cells]
            right_hand_side.append(right_hand_side[1])
    
            return np.transpose(right_hand_side)