Select Git revision
DG_Approximation.py
-
Laura Christine Kühle authoredLaura Christine Kühle authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
DG_Approximation.py 15.14 KiB
# -*- coding: utf-8 -*-
"""
@author: Laura C. Kühle
Urgent:
TODO: Move plotting into separate function
TODO: Adapt TCD from Soraya
(Dropbox->...->TEST_troubled-cell-detector->Troubled_Cell_Detector)
TODO: Add verbose output
TODO: Improve file naming (e.g. use '.' instead of '__')
Critical, but not urgent:
TODO: Use cfl_number for updating, not just time
TODO: Adjust code to allow classes for all equations
(Burger, linear advection, 1D Euler)
Currently not critical:
TODO: Replace loops with list comprehension if feasible
TODO: Check whether 'projection' is always a np.array()
TODO: Check whether all instance variables are sensible
TODO: Rename files according to standard
TODO: Outsource scripts into separate directory
TODO: Allow comparison between ANN training datasets
TODO: Add a default model state
TODO: Add an environment file for Snakemake
Not feasible yet or doc-related:
TODO: Double-check everything! (also with pylint, pytype, pydoc, pycodestyle)
TODO: Check whether documentation style is correct
TODO: Check whether all types in doc are correct
TODO: Discuss adding kwargs to attributes in documentation
TODO: Add type annotations to function heads
"""
import os
import json
import numpy as np
from sympy import Symbol
import math
import matplotlib
from matplotlib import pyplot as plt
import Troubled_Cell_Detector
import Initial_Condition
import Limiter
import Quadrature
import Update_Scheme
from Basis_Function import OrthonormalLegendre
matplotlib.use('Agg')
x = Symbol('x')
def encode_ndarray(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return obj
def decode_ndarray(obj):
if isinstance(obj, list):
return np.asarray(obj)
return obj
class DGScheme:
"""Class for Discontinuous Galerkin Method.
Approximates linear advection equation using Discontinuous Galerkin Method
with troubled-cell-based limiting.
Attributes
----------
interval_len : float
Length of the interval between left and right boundary.
cell_len : float
Length of a cell in mesh.
basis : Basis object
Basis for calculation.
mesh : ndarray
List of mesh valuation points.
inv_mass : ndarray
Inverse mass matrix.
Methods
-------
approximate()
Approximates projection.
save_plots()
Saves plots generated during approximation process.
build_training_data(adjustment, stencil_length, initial_condition=None)
Builds training data set.
"""
def __init__(self, detector, **kwargs):
"""Initializes DGScheme.
Parameters
----------
detector : str
Name of troubled cell detector class.
Other Parameters
----------------
wave_speed : float, optional
Speed of wave in rightward direction. Default: 1.
polynomial_degree : int, optional
Polynomial degree. Default: 2.
cfl_number : float, optional
CFL number to ensure stability. Default: 0.2.
num_grid_cells : int, optional
Number of cells in the mesh. Usually exponential of 2. Default: 64.
final_time : float, optional
Final time for which approximation is calculated. Default: 1.
left_bound : float, optional
Left boundary of interval. Default: -1.
right_bound : float, optional
Right boundary of interval. Default: 1.
verbose : bool, optional
Flag whether commentary in console is wanted. Default: False.
plot_dir : str, optional
Path to directory in which plots are saved. Default: 'test'.
history_threshold : float, optional
Threshold when history will be recorded.
Default: math.ceil(0.2/cfl_number).
detector_config : dict, optional
Additional parameters for detector object. Default: {}.
init_cond : str, optional
Name of initial condition for evaluation. Default: 'Sine'
init_config : dict, optional
Additional parameters for initial condition object. Default: {}.
limiter : str, optional
Name of limiter for evaluation. Default: 'ModifiedMinMod'.
limiter_config : dict, optional
Additional parameters for limiter. object. Default: {}:
quadrature : str, optional
Name of quadrature for evaluation. Default: 'Gauss'.
quadrature_config : dict, optional
Additional parameters for quadrature object. Default: {}.
update_scheme : str, optional
Name of update scheme for evaluation. Default: 'SSPRK3'.
"""
# Unpack keyword arguments
self._wave_speed = kwargs.pop('wave_speed', 1)
self._polynomial_degree = kwargs.pop('polynomial_degree', 2)
self._cfl_number = kwargs.pop('cfl_number', 0.2)
self._num_grid_cells = kwargs.pop('num_grid_cells', 64)
self._final_time = kwargs.pop('final_time', 1)
self._left_bound = kwargs.pop('left_bound', -1)
self._right_bound = kwargs.pop('right_bound', 1)
self._verbose = kwargs.pop('verbose', False)
self._plot_dir = kwargs.pop('plot_dir', 'testing')
self._history_threshold = kwargs.pop('history_threshold',
math.ceil(0.2/self._cfl_number))
self._detector = detector
self._detector_config = kwargs.pop('detector_config', {})
self._init_cond = kwargs.pop('init_cond', 'Sine')
self._init_config = kwargs.pop('init_config', {})
self._limiter = kwargs.pop('limiter', 'ModifiedMinMod')
self._limiter_config = kwargs.pop('limiter_config', {})
self._quadrature = kwargs.pop('quadrature', 'Gauss')
self._quadrature_config = kwargs.pop('quadrature_config', {})
self._update_scheme = kwargs.pop('update_scheme', 'SSPRK3')
# Throw an error if there are extra keyword arguments
if len(kwargs) > 0:
extra = ', '.join('"%s"' % k for k in list(kwargs.keys()))
raise ValueError('Unrecognized arguments: %s' % extra)
# Make sure all classes actually exist
if not hasattr(Troubled_Cell_Detector, self._detector):
raise ValueError('Invalid detector: "%s"' % self._detector)
if not hasattr(Initial_Condition, self._init_cond):
raise ValueError('Invalid initial condition: "%s"'
% self._init_cond)
if not hasattr(Limiter, self._limiter):
raise ValueError('Invalid limiter: "%s"' % self._limiter)
if not hasattr(Quadrature, self._quadrature):
raise ValueError('Invalid quadrature: "%s"' % self._quadrature)
if not hasattr(Update_Scheme, self._update_scheme):
raise ValueError('Invalid update scheme: "%s"'
% self._update_scheme)
self._reset()
# Replace the string names with the actual class instances
# (and add the instance variables for the quadrature)
self._init_cond = getattr(Initial_Condition, self._init_cond)(
self._left_bound, self._right_bound, self._init_config)
self._limiter = getattr(Limiter, self._limiter)(self._limiter_config)
self._quadrature = getattr(Quadrature, self._quadrature)(
self._quadrature_config)
self._detector = getattr(Troubled_Cell_Detector, self._detector)(
self._detector_config, self._mesh, self._wave_speed,
self._polynomial_degree, self._num_grid_cells, self._final_time,
self._left_bound, self._right_bound, self._basis,
self._init_cond, self._quadrature)
self._update_scheme = getattr(Update_Scheme, self._update_scheme)(
self._polynomial_degree, self._num_grid_cells, self._detector,
self._limiter)
def approximate(self, data_name):
"""Approximates projection.
Initializes projection and evolves it in time. Each time step consists
of three parts: A projection update, a troubled-cell detection,
and limiting based on the detected cells.
At final time, result and error plots are
generated and, if verbose flag is set, also displayed.
Attributes
----------
data_name : str
Name of data.
"""
projection = self._do_initial_projection(self._init_cond)
time_step = abs(self._cfl_number * self._cell_len / self._wave_speed)
current_time = 0
iteration = 0
troubled_cell_history = []
time_history = []
while current_time < self._final_time:
# Adjust for last cell
cfl_number = self._cfl_number
if current_time+time_step > self._final_time:
time_step = self._final_time-current_time
cfl_number = self._wave_speed * time_step / self._cell_len
# Update projection
projection, troubled_cells = self._update_scheme.step(projection,
cfl_number)
iteration += 1
if (iteration % self._history_threshold) == 0:
troubled_cell_history.append(troubled_cells)
time_history.append(current_time)
current_time += time_step
# Save approximation results in dictionary
approx_stats = {'projection': projection, 'time_history': time_history,
'troubled_cell_history': troubled_cell_history}
# Encode all ndarrays to fit JSON format
approx_stats = {key: encode_ndarray(approx_stats[key])
for key in approx_stats.keys()}
# Save approximation results in JSON format
with open(self._plot_dir+'/' + data_name + '.json', 'w') \
as json_file:
json_file.write(json.dumps(approx_stats))
# Read approximation results
with open(self._plot_dir+'/' + data_name + '.json') as json_file:
approx_stats = json.load(json_file)
# Decode all ndarrays by converting lists
approx_stats = {key: decode_ndarray(approx_stats[key])
for key in approx_stats.keys()}
# Plot exact/approximate results, errors, shock tubes,
# and any detector-dependant plots
self._detector.plot_results(**approx_stats)
def save_plots(self, plot_name):
"""Saves plotted results.
Sets plot directory, if not already existing, and saves plots
generated during the last approximation.
Parameters
----------
plot_name : str
Name of plot.
"""
# Set paths for plot files if not existing already
if not os.path.exists(self._plot_dir):
os.makedirs(self._plot_dir)
# Save plots
for identifier in plt.get_figlabels():
# Set path for figure directory if not existing already
if not os.path.exists(self._plot_dir + '/' + identifier):
os.makedirs(self._plot_dir + '/' + identifier)
plt.figure(identifier)
plt.savefig(self._plot_dir + '/' + identifier + '/' +
plot_name + '.pdf')
def _reset(self):
"""Resets instance variables."""
# Set additional necessary instance variables
self._interval_len = self._right_bound-self._left_bound
self._cell_len = self._interval_len / self._num_grid_cells
self._basis = OrthonormalLegendre(self._polynomial_degree)
# Set additional necessary config parameters
self._limiter_config['cell_len'] = self._cell_len
# Set mesh with one ghost point on each side
self._mesh = np.arange(self._left_bound - (3/2*self._cell_len),
self._right_bound + (5/2*self._cell_len),
self._cell_len) # +3/2
# Set inverse mass matrix
mass_matrix = []
for i in range(self._polynomial_degree+1):
new_row = []
for j in range(self._polynomial_degree+1):
new_entry = 0.0
if i == j:
new_entry = 1.0
new_row.append(new_entry)
mass_matrix.append(new_row)
self._inv_mass = np.array(mass_matrix)
def _do_initial_projection(self, initial_condition, adjustment=0):
"""Calculates initial projection.
Calculates a projection at time step 0 and adds ghost cells on both
sides of the array.
Parameters
----------
initial_condition : InitialCondition object
Initial condition used for calculation. May differ from instance
variable.
adjustment: float
Extent of adjustment of each evaluation point in x-direction.
Returns
-------
ndarray
Matrix containing projection of size (N+2, p+1) with N being the
number of grid cells and p being the polynomial degree.
"""
# Initialize matrix and set first entry to accommodate for ghost cell
output_matrix = [0]
basis_vector = self._basis.get_basis_vector()
for cell in range(self._num_grid_cells):
new_row = []
eval_point = self._left_bound + (cell+0.5)*self._cell_len
for degree in range(self._polynomial_degree + 1):
new_entry = sum(
initial_condition.calculate(
eval_point + self._cell_len/2
* self._quadrature.get_eval_points()[point]
- adjustment)
* basis_vector[degree].subs(
x, self._quadrature.get_eval_points()[point])
* self._quadrature.get_weights()[point]
for point in range(self._quadrature.get_num_points()))
new_row.append(np.float64(new_entry))
new_row = np.array(new_row)
output_matrix.append(self._inv_mass @ new_row)
# Set ghost cells to respective value
output_matrix[0] = output_matrix[self._num_grid_cells]
output_matrix.append(output_matrix[1])
# print(np.array(output_matrix).shape)
return np.transpose(np.array(output_matrix))
def build_training_data(self, adjustment, stencil_length,
add_reconstructions, initial_condition=None):
"""Builds training data set.
Initializes projection and calculates cell averages and
reconstructions for it.
Parameters
----------
adjustment : float
Extent of adjustment of each evaluation point in x-direction.
stencil_length : int
Size of training data array.
initial_condition : InitialCondition object, optional
Initial condition used for calculation.
Default: None (i.e. instance variable).
Returns
-------
ndarray
Matrix containing cell averages and reconstructions for initial
projection.
"""
if initial_condition is None:
initial_condition = self._init_cond
projection = self._do_initial_projection(initial_condition, adjustment)
return self._detector.calculate_cell_average_and_reconstructions(
projection[:, 1:-1], stencil_length)