Skip to content
Snippets Groups Projects
Select Git revision
  • 8ebf6fa8d3e232c4f9c7f497059366211a4dbd1d
  • develop default protected
  • master protected
  • kristin_optim_test
  • 3.9.0
  • 3.8.0
  • 3.7.0
  • 3.6.0
  • 3.5.0
  • 3.4.1
  • 3.4.0
  • 3.3.3
  • 3.3.2
  • 3.3.0
  • 3.2.14
  • 3.2.13
  • 3.2.12
17 results

.editorconfig

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    config.yaml 2.26 KiB
    data_dir: 'model-Mar14'
    random_seed: 1234
    
    # Parameter for Approximation with Troubled Cell Detection
    Approximation:
      plot_dir: 'fig-Mar14'
    
      schemes:
        Separation_Test:
          wave_speed: 1
          polynomial_degree: 2
          cfl_number: 0.2
          num_grid_cells: 32    # 40 elements work well for Condition 3
          final_time: 1
          left_bound: -1
          right_bound: 1
          verbose: True
    
          #detector: 'Theoretical'
          detector: 'ArtificialNeuralNetwork'
          detector_config:
            fold_len: 16
            whisker_len: 3
            add_reconstructions: True
            model_state: 'Adam.model.pt'
    
          init_cond: 'Sine'
          init_config:
            factor: 4
            left_factor: 3
    
          limiter: 'ModifiedMinMod'
          limiter_config:
            mod_factor: 0
            erase_degree: 0
    
          quadrature: 'Gauss'
          quadrature_config:
            num_eval_points: 12
    
          update_scheme: 'SSPRK3'
        Test_Run:
          detector: 'Theoretical'
    
    # Parameter for Training Data Generation
    ANN_Data:
      sample_number: 100
    
      left_boundary: -1
      right_boundary: 1
    
      smooth_troubled_balance: 0.5
    
      stencil_length: 3
      add_reconstructions : True
    
      # Initial Conditions for Training Data
      functions:
        Sine:
          factor: 2
        Linear:
        Polynomial:
        Continuous:
        LinearAbsolut:
        HeavisideOneSided:
        HeavisideTwoSided:
          adjustment: 0
    
    # Parameter for Model Training and Evaluation
    ANN_Training: