Changes
Page history
Update pca
authored
Oct 28, 2022
by
Dean Samuel Schmitz
Show whitespace changes
Inline
Side-by-side
PrologMethods/Transformation/pca.md
View page @
075b0254
...
...
@@ -12,7 +12,7 @@ An implementation of several strategies for principal components analysis (PCA),
[
links/resources
](
/PrologMethods/Transformation/pca#connected-linksresources
)
## **_pca/
13
_**
## **_pca/
9
_**
Apply Principal Component Analysis to the provided data set.
...
...
@@ -26,19 +26,19 @@ pca( +integer, +string,
```
### Parameters
| Name | Type | Description | Default |
|------|------|-------------|---------|
| scaleData | +integer(bool) | Whether or not to scale the data. | (0)false |
| decompositionPolicy | +string | Decomposition policy to use: "exact", "randomized", "randomized
-
block
-
krylov", "quic" | exact |
| decompositionPolicy | +string | Decomposition policy to use: "exact", "randomized", "randomized
_
block
_
krylov", "quic" | exact |
| data | +matrix | Input dataset to perform PCA on. | - |
| newDimension | +integer | Desired dimensionality of output dataset. If 0, no dimensionality reduction is performed. | 0 |
| transformedData | -matrix | Matrix to put results of PCA into. | - |
| eigenValues | -vector | Vector to put eigenvalues into. | - |
| eigenVectors | -matrix | Matrix to put eigenvectors (loadings) into. | - |
---
## **_pcaDimReduction/
10
_**
## **_pcaDimReduction/
8
_**
Use PCA for dimensionality reduction on the given dataset.
...
...
@@ -54,10 +54,11 @@ pcaDimReduction( +integer, +string,
```
### Parameters
| Name | Type | Description | Default |
|------|------|-------------|---------|
| scaleData | +integer(bool) | Whether or not to scale the data. | (0)false |
| decompositionPolicy | +string | Decomposition policy to use: "exact", "randomized", "randomized
-
block
-
krylov", "quic" | exact |
| decompositionPolicy | +string | Decomposition policy to use: "exact", "randomized", "randomized
_
block
_
krylov", "quic" | exact |
| data | +matrix | Input dataset to perform PCA on. | - |
| newDimension | +float | Desired dimensionality of output dataset. If 0, no dimensionality reduction is performed. | 0 |
| transformedData | -matrix | Matrix to put results of PCA into. | - |
...
...
@@ -65,7 +66,7 @@ pcaDimReduction( +integer, +string,
---
## **_pcaVarianceDimReduction/
10
_**
## **_pcaVarianceDimReduction/
8
_**
Use PCA for dimensionality reduction on the given dataset.
...
...
@@ -83,10 +84,11 @@ pcaVarianceDimReduction( +integer, +string,
```
### Parameters
| Name | Type | Description | Default |
|------|------|-------------|---------|
| scaleData | +integer(bool) | Whether or not to scale the data. | (0)false |
| decompositionPolicy | +string | Decomposition policy to use: "exact", "randomized", "randomized
-
block
-
krylov", "quic" | exact |
| decompositionPolicy | +string | Decomposition policy to use: "exact", "randomized", "randomized
_
block
_
krylov", "quic" | exact |
| data | +matrix | Input dataset to perform PCA on. | - |
| varToRetaine | +float | Amount of variance to retain; should be between 0 and 1. If 1, all variance is retained. | 0 |
| transformedData | -matrix | Matrix to put results of PCA into. | - |
...
...
...
...