|
|
|
# DBSCAN clustering
|
|
|
|
|
|
|
|
An implementation of DBSCAN clustering. Given a dataset, this can compute and return a clustering of that dataset.
|
|
|
|
|
|
|
|
# Available Predicates
|
|
|
|
|
|
|
|
* [dbscan/13](https://gitlab.cs.uni-duesseldorf.de/stups/abschlussarbeiten/prolog-mlpack-libary/-/wikis/PrologMethods/Clustering/dbscan#dbscan13)
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
[links/resources](https://gitlab.cs.uni-duesseldorf.de/stups/abschlussarbeiten/prolog-mlpack-libary/-/wikis/PrologMethods/Clustering/dbscan#connected-linksresources)
|
|
|
|
|
|
|
|
## **_dbscan/13_**
|
|
|
|
|
|
|
|
This is a one predicate model where you configure the model with the input parameters and get returned the results in the same predicate.
|
|
|
|
|
|
|
|
```prolog
|
|
|
|
%% part of the predicate definition
|
|
|
|
dbscan( +float32, +integer, +integer,
|
|
|
|
+string, +string,
|
|
|
|
+pointer(float_array), +integer, +integer,
|
|
|
|
-pointer(float_array), -integer,
|
|
|
|
-pointer(float_array), -integer, -integer)
|
|
|
|
```
|
|
|
|
|
|
|
|
### Parameters
|
|
|
|
| Name | Type | Description | Default |
|
|
|
|
|------|------|-------------|---------|
|
|
|
|
| epsilon | +float | Radius of each range search | 1.0 |
|
|
|
|
| minPoints | +integer | Minimum number of points for a cluster | 5 |
|
|
|
|
| batchMode | +integer(bool) | If true, all points are searched in batch. | (1)true |
|
|
|
|
| selectionType | +string | If using point selection policy, the type of selection to use ("ordered", "random") | ordered |
|
|
|
|
| treeType | +string | The type of tree to use ("kd", "r", "r_star", "x", "hilbert_r", "r_plus", "r_plus_plus", "cover", "ball") | kd |
|
|
|
|
| data | +matrix | Input dataset to cluster | - |
|
|
|
|
| assignments | -vector | Output matrix for assignments of each point. | - |
|
|
|
|
| centroids | -matrix | Matrix to save output centroids to. | - |
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
# Connected Links/Resources
|
|
|
|
|
|
|
|
If you want a more detailed explanation, then go to the python documentation. There is most of the time a good explanation on how the methods work and what the parameters do.
|
|
|
|
|
|
|
|
* [MLpack::dbscan_C++\_documentation](https://www.mlpack.org/doc/stable/doxygen/classmlpack_1_1dbscan_1_1DBSCAN.html)
|
|
|
|
* [MLpack::dbscan_Python_documentation](https://www.mlpack.org/doc/stable/python_documentation.html#decision_stump)
|
|
|
|
|
|
|
|
added some of the links from the python documentation
|
|
|
|
|
|
|
|
* [Decision tree](https://www.mlpack.org/doc/stable/decision_tree)
|
|
|
|
* [Decision stumps on Wikipedia](https://en.wikipedia.org/wiki/Decision_stump) |
|
|
|
\ No newline at end of file |