Skip to content
Snippets Groups Projects
Commit d79fa368 authored by Dean Samuel Schmitz's avatar Dean Samuel Schmitz
Browse files

Updating documentation

parent 7f4c8b7a
No related branches found
No related tags found
No related merge requests found
:- module(random_forest, [ initModelNoTrain/1,
initModelWithTrainNoWeights/10,
initModelWithTrainWithWeights/12,
......@@ -22,69 +23,149 @@
%% definitions for the connected function
%% TODO:
%% --Input--
%% int notUsedParam
%%
%% --Output--
%%
%% --Description--
%% Initilizes the model without training it.
%%
foreign(initModelNoTrain, c, initModelNoTrain(+integer)).
%% TODO:
%% --Input--
%% mat data,
%% vec labels,
%% int numClasses => 0,
%% int numTrees => 20,
%% int minimumLeafSize => 1,
%% float32 minimumGainSplit => 1e-7,
%% int maximumDepth => 0
%%
%% --Output--
%%
%% --Description--
foreign(initModelWithTrainNoWeights, c, initModelWithTrainNoWeights(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +integer, +integer, +float32, +integer)).
%% Initilizes the model and trains it but does not apply weights to it.
%%
foreign(initModelWithTrainNoWeights, c, initModelWithTrainNoWeights(
+pointer(float_array), +integer, +integer,
+pointer(float_array), +integer,
+integer, +integer, +integer, +float32, +integer)).
%% TODO:
%% --Input--
%% mat data,
%% vec labels,
%% int numClasses => 0,
%% vec weights,
%% int numTrees => 20,
%% int minimumLeafSize => 1,
%% float32 minimumGainSplit => 1e-7,
%% int maximumDepth => 0
%%
%% --Output--
%%
%% --Description--
foreign(initModelWithTrainWithWeights, c, initModelWithTrainWithWeights(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer , +integer, +float32, +integer)).
%% Initilizes the model, trains it and applies weights to it.
%%
foreign(initModelWithTrainWithWeights, c, initModelWithTrainWithWeights(
+pointer(float_array), +integer, +integer,
+pointer(float_array), +integer,
+integer,
+pointer(float_array), +integer,
+integer , +integer, +float32, +integer)).
%% TODO:
%% --Input--
%% vec point
%%
%% --Output--
%% int prediction,
%% vec probabilities
%%
%% --Description--
foreign(classifyPoint, c, classifyPoint(+pointer(float_array), +integer, -integer, -pointer(float_array), -integer)).
%% Predict the class of the given point and return the predicted class probabilities for each class.
%% Random forest has to be train before using this.
%%
foreign(classifyPoint, c, classifyPoint(+pointer(float_array), +integer,
-integer,
-pointer(float_array), -integer)).
%% TODO:
%% --Input--
%% mat data
%%
%% --Output--
%% vec prediction,
%% mat probabilities
%%
%% --Description--
foreign(classifyMatrix, c, classifyMatrix(+pointer(float_array), +integer, +integer, -pointer(float_array), -integer, -pointer(float_array), -integer, -integer)).
%% Predict the classes of each point in the given dataset, also returning the predicted class probabilities for each point.
%% Random forest has to be train before using this.
%%
foreign(classifyMatrix, c, classifyMatrix( +pointer(float_array), +integer, +integer,
-pointer(float_array), -integer,
-pointer(float_array), -integer, -integer)).
%% TODO:
%% --Input--
%%
%% --Output--
%% int numTrees
%%
%% --Description--
%% Get the number of trees in the forest.
%%
foreign(numTrees, c, numTrees([-integer])).
%% TODO:
%% --Input--
%% mat data,
%% vec labels,
%% int numClasses => 0,
%% int numTrees => 20,
%% int minimumLeafSize => 1,
%% float32 minimumGainSplit => 1e-7,
%% int maximumDepth => 0
%%
%% --Output--
%% float32 average entropy of all the decision trees
%%
%% --Description--
foreign(trainNoWeights, c, trainNoWeights(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +integer, +integer, +float32, +integer, [-float32])).
%% Train the random forest on the given labeled training data with the given number of trees.
%% The minimumLeafSize and minimumGainSplit parameters are given to each individual decision tree during tree building.
%%
foreign(trainNoWeights, c, trainNoWeights( +pointer(float_array), +integer, +integer,
+pointer(float_array), +integer,
+integer, +integer, +integer, +float32, +integer,
[-float32])).
%% TODO:
%% --Input--
%% mat data,
%% vec labels,
%% int numClasses => 0,
%% vec weights,
%% int numTrees => 20,
%% int minimumLeafSize => 1,
%% float32 minimumGainSplit => 1e-7,
%% int maximumDepth => 0
%%
%% --Output--
%% float32 average entropy of all the decision trees
%%
%% --Description--
foreign(trainWithWeights, c, trainWithWeights(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +integer, +float32, +integer, [-float32])).
%% Train the random forest on the given weighted labeled training data with the given number of trees.
%% The minimumLeafSize and minimumGainSplit parameters are given to each individual decision tree during tree building.
%%
foreign(trainWithWeights, c, trainWithWeights( +pointer(float_array), +integer, +integer,
+pointer(float_array), +integer,
+integer,
+pointer(float_array), +integer,
+integer, +integer, +float32, +integer,
[-float32])).
%% Defines the functions that get connected from main.cpp
......
:- module(softmax_regression, [ initModelNoTrain/3,
initModelWithTrain/8,
classifyPoint/3,
......@@ -22,27 +23,39 @@
%% definitions for the connected function
%% --Input--
%% int inputSize => 0,
%% int numClasses => 0,
%% bool fitIntercept => (1)true / (0)false
%% bool fitIntercept => (1)true / (0)false => false
%%
%% --Output--
%%
%% --Description--
foreign(initModelNoTrain, c, initModelNoTrain(+integer, +integer, +integer)).
%% Initializes the softmax_regression model without training.
%% Be sure to use Train before calling Classif or ComputeAccuracy, otherwise the results may be meaningless.
%%
foreign(initModelNoTrain, c, initModelNoTrain( +integer, +integer,
+integer)).
%% --Input--
%% mat data,
%% vec labels,
%% int numClasses,
%% int numClasses => 0,
%% float32 lambda => 0.0001,
%% bool fitIntercept => (1)true / (0)false
%% bool fitIntercept => (1)true / (0)false => false
%%
%% --Output--
%%
%% --Description--
foreign(initModelWithTrain, c, initModelWithTrain(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +float32, +integer)).
%% Initializes the softmax_regression model and trains it.
%%
foreign(initModelWithTrain, c, initModelWithTrain( +pointer(float_array), +integer, +integer,
+pointer(float_array), +integer,
+integer, +float32,
+integer)).
%% --Input--
%% vec point
......@@ -51,7 +64,11 @@ foreign(initModelWithTrain, c, initModelWithTrain(+pointer(float_array), +intege
%% int predicted label
%%
%% --Description--
foreign(classifyPoint, c, classifyPoint(+pointer(float_array), +integer, [-integer])).
%% Classify the given point.
%%
foreign(classifyPoint, c, classifyPoint(+pointer(float_array), +integer,
[-integer])).
%% --Input--
%% mat data
......@@ -61,7 +78,12 @@ foreign(classifyPoint, c, classifyPoint(+pointer(float_array), +integer, [-integ
%% mat probabilities
%%
%% --Description--
foreign(classifyMatrix, c, classifyMatrix(+pointer(float_array), +integer, +integer, -pointer(float_array), -integer, -pointer(float_array), -integer, -integer)).
%% Classify the given points, returning class probabilities and predicted class label for each point.
%%
foreign(classifyMatrix, c, classifyMatrix( +pointer(float_array), +integer, +integer,
-pointer(float_array), -integer,
-pointer(float_array), -integer, -integer)).
%% --Input--
%% mat data,
......@@ -71,7 +93,13 @@ foreign(classifyMatrix, c, classifyMatrix(+pointer(float_array), +integer, +inte
%% float32 accuracy
%%
%% --Description--
foreign(computeAccuracy, c, computeAccuracy(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, [-float32])).
%% Computes accuracy of the learned model given the feature data and the labels associated with each data point.
%% Predictions are made using the provided data and are compared with the actual labels.
%%
foreign(computeAccuracy, c, computeAccuracy( +pointer(float_array), +integer, +integer,
+pointer(float_array), +integer,
[-float32])).
%% --Input--
%%
......@@ -79,6 +107,8 @@ foreign(computeAccuracy, c, computeAccuracy(+pointer(float_array), +integer, +in
%% int size of the features
%%
%% --Description--
%% Gets the features size of the training data.
%%
foreign(featureSize, c, featureSize([-integer])).
%% --Input--
......@@ -87,18 +117,26 @@ foreign(featureSize, c, featureSize([-integer])).
%% mat parameters
%%
%% --Description--
%% Get the model parameters.
%%
foreign(parameters, c, parameters(-pointer(float_array), -integer, -integer)).
%% --Input--
%% mat data,
%% vec labels,
%% int numClasses
%% int numClasses => 0
%%
%% --Output--
%% float32 objective value of final point
%%
%% --Description--
foreign(train, c, train(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, [-float32])).
%% Trains the softmax regression model with the given training data.
%%
foreign(train, c, train(+pointer(float_array), +integer, +integer,
+pointer(float_array), +integer,
+integer,
[-float32])).
%% Defines the functions that get connected from main.cpp
......
:- module(sparse_coding, [ initModelWithTrain/9,
initModelNoTrain/6,
encode/6,
......@@ -18,11 +19,11 @@
%% definitions for the connected function
%% TODO:
%% --Input--
%% mat data,
%% int atoms,
%% float32 lambda1,
%% int atoms => 15,
%% float32 lambda1 => 0,
%% float32 lambda2 => 0,
%% int maxIterations => 0,
%% float32 objTolerance => 0.01,
......@@ -31,13 +32,15 @@
%% --Output--
%%
%% --Description--
%% Initializes sparse_coding model and trains it.
%%
foreign(initModelWithTrain, c, initModelWithTrain( +pointer(float_array), +integer, +integer,
+integer, +float32, +float32, +integer, +float32, +float32)).
%% TODO:
%% --Input--
%% int atoms,
%% float32 lambda1,
%% int atoms => 15,
%% float32 lambda1 => 0,
%% float32 lambda2 => 0,
%% int maxIterations => 0,
%% float32 objTolerance => 0.01,
......@@ -46,9 +49,11 @@ foreign(initModelWithTrain, c, initModelWithTrain(+pointer(float_array), +intege
%% --Output--
%%
%% --Description--
%% Initializes sparse_coding model but will not train the model, and a subsequent call to Train will be required before the model can encode points with Encode.
%%
foreign(initModelNoTrain, c, initModelNoTrain(+integer, +float32, +float32, +integer, +float32, +float32)).
%% TODO:
%% --Input--
%% mat data
%%
......@@ -56,9 +61,12 @@ foreign(initModelNoTrain, c, initModelNoTrain(+integer, +float32, +float32, +int
%% mat codes
%%
%% --Description--
foreign(encode, c, encode(+pointer(float_array), +integer, +integer, -pointer(float_array), -integer, -integer)).
%% Sparse code each point in the given dataset via LARS, using the current dictionary and store the encoded data in the codes matrix.
%%
foreign(encode, c, encode( +pointer(float_array), +integer, +integer,
-pointer(float_array), -integer, -integer)).
%% TODO:
%% --Input--
%% mat data
%%
......@@ -66,7 +74,10 @@ foreign(encode, c, encode(+pointer(float_array), +integer, +integer, -pointer(fl
%% float32 final objective value
%%
%% --Description--
foreign(train, c, train(+pointer(float_array), +integer, +integer, [-float32])).
%% Train the sparse coding model on the given dataset.
%%
foreign(train, c, train(+pointer(float_array), +integer, +integer,
[-float32])).
%% Defines the functions that get connected from main.cpp
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment