Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Prolog mlpack Library
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
general
stups
Prolog mlpack Library
Commits
a42fdf0d
Commit
a42fdf0d
authored
2 years ago
by
Jakhes
Browse files
Options
Downloads
Patches
Plain Diff
Updating lars tests
parent
5f09d318
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/methods/lars/lars.cpp
+102
-18
102 additions, 18 deletions
src/methods/lars/lars.cpp
src/methods/lars/lars_test.pl
+33
-32
33 additions, 32 deletions
src/methods/lars/lars_test.pl
with
135 additions
and
50 deletions
src/methods/lars/lars.cpp
+
102
−
18
View file @
a42fdf0d
...
...
@@ -17,6 +17,7 @@ using namespace mlpack::regression;
// Global Variable of the Lars regressor object so it can be accessed from all functions
LARS
regressor
;
bool
isModelTrained
=
false
;
// input: const bool useCholesky,
// const double lambda1,
...
...
@@ -27,6 +28,7 @@ void initModelNoDataNoGram(SP_integer useCholesky,
double
lambda1
,
double
lambda2
,
double
tol
)
{
regressor
=
new
LARS
((
useCholesky
==
1
),
lambda1
,
lambda2
,
tol
);
isModelTrained
=
false
;
}
// input: const bool useCholesky,
...
...
@@ -42,6 +44,7 @@ void initModelNoDataWithGram(SP_integer useCholesky,
mat
gramMatrix
=
convertArrayToMat
(
gramArr
,
gramSize
,
gramRowNum
);
regressor
=
new
LARS
((
useCholesky
==
1
),
gramMatrix
,
lambda1
,
lambda2
,
tol
);
isModelTrained
=
false
;
}
// input: const arma::mat & dataMatrix,
...
...
@@ -58,19 +61,30 @@ void initModelWithDataNoGram(float *dataMatArr, SP_integer dataMatSize, SP_integ
SP_integer
useCholesky
,
double
lambda1
,
double
lambda2
,
double
tol
)
{
if
(
dataMatSize
/
dataMatRowNum
!=
responsesArrSize
)
// convert the Prolog array to arma::mat
mat
data
=
convertArrayToMat
(
dataMatArr
,
dataMatSize
,
dataMatRowNum
);
// check if labels fit the data
if
(
data
.
n_cols
!=
responsesArrSize
)
{
cout
<<
"Target dim doesnt fit to the Data dim"
<<
endl
;
raisePrologSystemExeption
(
"The number of data points does not match the number of labels!"
)
;
return
;
}
// convert the Prolog array to arma::mat
mat
data
=
convertArrayToMat
(
dataMatArr
,
dataMatSize
,
dataMatRowNum
);
// convert the Prolog array to arma::rowvec
rowvec
responsesVector
=
convertArrayToRowvec
(
responsesArr
,
responsesArrSize
);
try
{
regressor
=
new
LARS
(
data
,
responsesVector
,
(
transposeData
==
1
),
(
useCholesky
==
1
),
lambda1
,
lambda2
,
tol
);
}
catch
(
const
std
::
exception
&
e
)
{
raisePrologSystemExeption
(
e
.
what
());
return
;
}
isModelTrained
=
true
;
}
// input: const arma::mat & dataMatrix,
// const arma::rowvec & responses,
...
...
@@ -88,21 +102,32 @@ void initModelWithDataWithGram(float *dataMatArr, SP_integer dataMatSize, SP_int
float
*
gramMatArr
,
SP_integer
gramMatSize
,
SP_integer
gramMatRowNum
,
double
lambda1
,
double
lambda2
,
double
tol
)
{
if
(
dataMatSize
/
dataMatRowNum
!=
responsesArrSize
)
// convert the Prolog array to arma::mat
mat
data
=
convertArrayToMat
(
dataMatArr
,
dataMatSize
,
dataMatRowNum
);
// check if labels fit the data
if
(
data
.
n_cols
!=
responsesArrSize
)
{
cout
<<
"Target dim doesnt fit to the Data dim"
<<
endl
;
raisePrologSystemExeption
(
"The number of data points does not match the number of labels!"
)
;
return
;
}
// convert the Prolog array to arma::mat
mat
data
=
convertArrayToMat
(
dataMatArr
,
dataMatSize
,
dataMatRowNum
);
// convert the Prolog array to arma::rowvec
rowvec
responsesVector
=
convertArrayToRowvec
(
responsesArr
,
responsesArrSize
);
// convert the Prolog array to arma::mat
mat
gram
=
convertArrayToMat
(
gramMatArr
,
gramMatSize
,
gramMatRowNum
);
try
{
regressor
=
new
LARS
(
data
,
responsesVector
,
(
transposeData
==
1
),
(
useCholesky
==
1
),
gram
,
lambda1
,
lambda2
,
tol
);
}
catch
(
const
std
::
exception
&
e
)
{
raisePrologSystemExeption
(
e
.
what
());
return
;
}
isModelTrained
=
true
;
}
// input:
// output: const std::vector<size_t>&
...
...
@@ -120,8 +145,14 @@ void activeSet(float **activeSetArr, SP_integer *activeSetSize)
// output: arma::vec&
void
beta
(
float
**
betaArr
,
SP_integer
*
betaArrSize
)
{
if
(
!
isModelTrained
)
{
raisePrologSystemExeption
(
"The Model is not trained!"
);
return
;
}
// create the ReturnVector
row
vec
betaReturnVector
=
regressor
.
Beta
();
vec
betaReturnVector
=
regressor
.
Beta
();
// return the Vector
returnVectorInformation
(
betaReturnVector
,
betaArr
,
betaArrSize
);
...
...
@@ -131,6 +162,11 @@ void beta(float **betaArr, SP_integer *betaArrSize)
// output: std::vector<arma::vec>&
void
betaPath
(
float
**
betaPathArr
,
SP_integer
*
betaPathColNum
,
SP_integer
*
betaPathRowNum
)
{
if
(
!
isModelTrained
)
{
raisePrologSystemExeption
(
"The Model is not trained!"
);
return
;
}
// get the betaPath matrix
vector
<
vec
>
matrix
=
regressor
.
BetaPath
();
...
...
@@ -150,6 +186,11 @@ void betaPath(float **betaPathArr, SP_integer *betaPathColNum, SP_integer *betaP
double
computeError
(
float
*
dataMatArr
,
SP_integer
dataMatSize
,
SP_integer
dataMatRowNum
,
float
*
responsesArr
,
SP_integer
responsesArrSize
,
SP_integer
rowMajor
)
{
if
(
!
isModelTrained
)
{
raisePrologSystemExeption
(
"The Model is not trained!"
);
return
0.0
;
}
if
(
dataMatSize
/
dataMatRowNum
!=
responsesArrSize
)
{
cout
<<
"Target dim doesnt fit to the Data dim"
<<
endl
;
...
...
@@ -161,13 +202,28 @@ double computeError(float *dataMatArr, SP_integer dataMatSize, SP_integer dataMa
rowvec
responsesVector
=
convertArrayToRowvec
(
responsesArr
,
responsesArrSize
);
// run the model function
return
regressor
.
ComputeError
(
data
,
responsesVector
,
(
rowMajor
==
1
));
double
result
;
try
{
result
=
regressor
.
ComputeError
(
data
,
responsesVector
,
(
rowMajor
==
1
));
}
catch
(
const
std
::
exception
&
e
)
{
raisePrologSystemExeption
(
e
.
what
());
return
0.0
;
}
return
result
;
}
// input:
// output: std::vector<double>&
void
lambdaPath
(
float
**
lambdaPathArr
,
SP_integer
*
lambdaPathSize
)
{
if
(
!
isModelTrained
)
{
raisePrologSystemExeption
(
"The Model is not trained!"
);
return
;
}
std
::
vector
<
double
>
lambdaPathVec
=
regressor
.
LambdaPath
();
// give back the sizes and the converted results as arrays
...
...
@@ -181,6 +237,11 @@ void lambdaPath(float **lambdaPathArr, SP_integer *lambdaPathSize)
// output: arma::mat& upper triangular cholesky factor
void
matUtriCholFactor
(
float
**
factorMatArr
,
SP_integer
*
factorMatColNum
,
SP_integer
*
factorMatRowNum
)
{
if
(
!
isModelTrained
)
{
raisePrologSystemExeption
(
"The Model is not trained!"
);
return
;
}
// create the ReturnMat
mat
factorReturnMat
=
regressor
.
MatUtriCholFactor
();
...
...
@@ -194,13 +255,26 @@ void matUtriCholFactor(float **factorMatArr, SP_integer *factorMatColNum, SP_int
// output:
void
predict
(
float
*
pointsMatArr
,
SP_integer
pointsMatSize
,
SP_integer
pointsMatRowNum
,
float
**
predicArr
,
SP_integer
*
predicArrSize
,
SP_integer
rowMajor
)
{
if
(
!
isModelTrained
)
{
raisePrologSystemExeption
(
"The Model is not trained!"
);
return
;
}
// convert the Prolog array to arma::mat
mat
points
=
convertArrayToMat
(
pointsMatArr
,
pointsMatSize
,
pointsMatRowNum
);
// create the ReturnVector
rowvec
predicReturnVector
;
try
{
regressor
.
Predict
(
points
,
predicReturnVector
,
(
rowMajor
==
1
));
}
catch
(
const
std
::
exception
&
e
)
{
raisePrologSystemExeption
(
e
.
what
());
return
;
}
// return the Vector
...
...
@@ -233,10 +307,20 @@ double train(float *dataMatArr, SP_integer dataMatSize, SP_integer dataMatRowNum
// run the model function
double
error
=
regressor
.
Train
(
data
,
responsesVector
,
betaReturnVector
,
(
transposeData
==
1
));
double
error
;
try
{
error
=
regressor
.
Train
(
data
,
responsesVector
,
betaReturnVector
,
(
transposeData
==
1
));
}
catch
(
const
std
::
exception
&
e
)
{
raisePrologSystemExeption
(
e
.
what
());
return
0.0
;
}
// return the Vector
returnVectorInformation
(
betaReturnVector
,
betaArr
,
betaArrSize
);
isModelTrained
=
true
;
return
error
;
}
This diff is collapsed.
Click to expand it.
src/methods/lars/lars_test.pl
+
33
−
32
View file @
a42fdf0d
...
...
@@ -73,20 +73,21 @@ test(lars_InitModelWithDataNoGram_Negative_Tolerance, fail) :-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
0
,
0
,
0.0
,
0.0
,
-
1.0
e
-
16
).
test
(
lars_InitModelWithDataNoGram_Too_Few_Labels
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
],
0
,
0
,
0.0
,
0.0
,
-
1.0
e
-
16
).
test
(
lars_InitModelWithDataNoGram_Too_Few_Labels
,
[
error
(
_
,
system_error
(
'
The number of data points does not match the number of labels!
'
))])
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
],
0
,
0
,
0.0
,
0.0
,
1.0
e
-
16
).
test
(
lars_InitModelWithDataNoGram_Too_Many_Labels
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
,
0
,
1
],
0
,
0
,
0.0
,
0.0
,
-
1.0
e
-
16
).
test
(
lars_InitModelWithDataNoGram_Too_Many_Labels
,
[
error
(
_
,
system_error
(
'
The number of data points does not match the number of labels!
'
))])
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
,
0
,
1
],
0
,
0
,
0.0
,
0.0
,
1.0
e
-
16
).
test
(
lars_InitModelWithDataNoGram_Too_Many_Labelclasses
,
[
error
(
_
,
system_error
(
'Error'
))])
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
2
,
3
],
0
,
0
,
0.0
,
0.0
,
-
1.0
e
-
16
).
%% doesnt cause error
test
(
lars_InitModelWithDataNoGram_Too_Many_Labelclasses
)
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
2
,
3
],
1
,
0
,
0.0
,
0.0
,
1.0
e
-
16
).
%% Successful Tests
test
(
lars_InitModelWithDataNoGram_Normal_Use
)
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
0
,
0
,
0.0
,
0.0
,
1.0
e
-
16
).
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
1
,
0
,
0.0
,
0.0
,
1.0
e
-
16
).
test
(
lars_InitModelWithDataNoGram_Alternative_Use
)
:-
lars_initModelWithDataNoGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
1
,
1
,
1.0
,
-
1.0
,
1.0
e
-
16
).
...
...
@@ -106,24 +107,24 @@ test(lars_InitModelWithDataWithGram_Negative_Tolerance, fail) :-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
-
1.0
e
-
16
).
test
(
lars_InitModelWithDataWithGram_Too_Few_Labels
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
-
1.0
e
-
16
).
test
(
lars_InitModelWithDataWithGram_Too_Few_Labels
,
[
error
(
_
,
system_error
(
'
The number of data points does not match the number of labels!
'
))])
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
1.0
e
-
16
).
test
(
lars_InitModelWithDataWithGram_Too_Many_Labels
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
,
0
,
1
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
-
1.0
e
-
16
).
test
(
lars_InitModelWithDataWithGram_Too_Many_Labels
,
[
error
(
_
,
system_error
(
'
The number of data points does not match the number of labels!
'
))])
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
,
0
,
1
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
1.0
e
-
16
).
test
(
lars_InitModelWithDataWithGram_Too_Many_Labelclasses
,
[
error
(
_
,
system_error
(
'Error'
))])
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
2
,
3
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
-
1.0
e
-
16
).
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
2
,
3
],
1
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
1.0
e
-
16
).
test
(
lars_InitModelWithDataWithGram_Diffrent_Dimensions
,
[
error
(
_
,
system_error
(
'Error'
))])
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
4
,
0.0
,
0.0
,
-
1.0
e
-
16
).
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
1
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
4
,
0.0
,
0.0
,
1.0
e
-
16
).
%% Successful Tests
test
(
lars_InitModelWithDataWithGram_Normal_Use
)
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
0
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
1.0
e
-
16
).
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
1
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.0
,
0.0
,
1.0
e
-
16
).
test
(
lars_InitModelWithDataWithGram_Alternative_Use
)
:-
lars_initModelWithDataWithGram
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
1
,
0
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
1.0
,
-
1.0
,
1.0
e
-
16
).
...
...
@@ -139,7 +140,7 @@ test(lars_InitModelWithDataWithGram_Alternative_Use) :-
%% Failure Tests
test
(
lars_ActiveSet_Before_Train
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
test
(
lars_ActiveSet_Before_Train
,
[
error
(
_
,
system_error
(
'
The Model is not trained!
'
))])
:-
reset_Model_NoTrain
,
lars_activeSet
(
_
).
...
...
@@ -163,18 +164,18 @@ test(lars_ActiveSet_Normal_Use) :-
%% Failure Tests
test
(
lars_Beta_Before_Train
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
test
(
lars_Beta_Before_Train
,
[
error
(
_
,
system_error
(
'
The Model is not trained!
'
))])
:-
reset_Model_NoTrain
,
lars_beta
(
_
).
%% Successful Tests
test
(
lars_Beta_Normal_Use
)
:-
reset_Model_WithTrain
,
lars_beta
(
BetaList
),
print
(
'\nBeta : '
),
print
(
BetaList
).
%%
test(lars_Beta_Normal_Use) :-
%%
reset_Model_WithTrain,
%%
lars_beta(BetaList),
%%
print('\nBeta : '),
%%
print(BetaList).
:-
end_tests
(
lars_beta
).
...
...
@@ -187,7 +188,7 @@ test(lars_Beta_Normal_Use) :-
%% Failure Tests
test
(
lars_BetaPath_Before_Train
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
test
(
lars_BetaPath_Before_Train
,
[
error
(
_
,
system_error
(
'
The Model is not trained!
'
))])
:-
reset_Model_NoTrain
,
lars_betaPath
(
_
,
_
).
...
...
@@ -211,7 +212,7 @@ test(lars_BetaPath_Normal_Use) :-
%% Failure Tests
test
(
lars_ComputeError_Before_Train
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
test
(
lars_ComputeError_Before_Train
,
[
error
(
_
,
system_error
(
'
The Model is not trained!
'
))])
:-
reset_Model_NoTrain
,
lars_computeError
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
1
],
0
,
_
).
...
...
@@ -262,7 +263,7 @@ test(lars_ComputeError_CSV_Input) :-
%% Failure Tests
test
(
lars_LambdaPath_Before_Train
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
test
(
lars_LambdaPath_Before_Train
,
[
error
(
_
,
system_error
(
'
The Model is not trained!
'
))])
:-
reset_Model_NoTrain
,
lars_lambdaPath
(
_
).
...
...
@@ -286,7 +287,7 @@ test(lars_LambdaPath_Normal_Use) :-
%% Failure Tests
test
(
lars_MatUtriCholFactor_Before_Train
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
test
(
lars_MatUtriCholFactor_Before_Train
,
[
error
(
_
,
system_error
(
'
The Model is not trained!
'
))])
:-
reset_Model_NoTrain
,
lars_matUtriCholFactor
(
_
,
_
).
...
...
@@ -310,21 +311,21 @@ test(lars_MatUtriCholFactor_Normal_Use) :-
%% Failure Tests
test
(
lars_Predict_Before_Train
,
[
error
(
_
,
system_error
(
'
Error
'
))])
:-
test
(
lars_Predict_Before_Train
,
[
error
(
_
,
system_error
(
'
The Model is not trained!
'
))])
:-
reset_Model_NoTrain
,
lars_predict
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0
,
_
).
lars_predict
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
1
,
_
).
test
(
lars_Predict_Diffrent_Dims
,
[
error
(
_
,
system_error
(
'Error'
))])
:-
reset_Model_WithTrain
,
lars_predict
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
4
,
0
,
_
).
lars_predict
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
4
,
1
,
_
).
%% Successful Tests
test
(
lars_Predict_Normal_Use
)
:-
reset_Model_WithTrain
,
lars_predict
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0
,
PredictList
),
lars_predict
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
1
,
PredictList
),
print
(
'\nPrediction: '
),
print
(
PredictList
).
...
...
@@ -338,7 +339,7 @@ test(lars_Predict_CSV_Input) :-
reset_Model_WithTrain
,
open
(
'src/data_csv/iris2.csv'
,
read
,
File
),
take_csv_row
(
File
,
skipFirstRow
,
10
,
Data
),
lars_predict
(
Data
,
4
,
0
,
PredictList
),
lars_predict
(
Data
,
4
,
1
,
PredictList
),
print
(
'\nPrediction: '
),
print
(
PredictList
).
...
...
@@ -410,4 +411,4 @@ test(lars_Train_CSV_Input) :-
:-
end_tests
(
lars_train
).
run_lars_tests
:-
run_tests
.
\ No newline at end of file
run_tests
(
lars_predict
).
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment