Skip to content
Snippets Groups Projects
Commit 9d296538 authored by Jakhes's avatar Jakhes
Browse files

Adding naive_bayes_classifier

parent ed1f506a
No related branches found
No related tags found
No related merge requests found
splfr=/usr/local/sicstus4.7.1/bin/splfr
METHOD_NAME=naive_bayes_classifier
$(METHOD_NAME).so: $(METHOD_NAME).pl $(METHOD_NAME).cpp
$(splfr) -larmadillo -fopenmp -lmlpack -lstdc++ -cxx --struct $(METHOD_NAME).pl $(METHOD_NAME).cpp ../../helper_files/helper.cpp
clean:
rm $(METHOD_NAME).so
#include <sicstus/sicstus.h>
/* ex_glue.h is generated by splfr from the foreign/[2,3] facts.
Always include the glue header in your foreign resource code.
*/
#include "naive_bayes_classifier_glue.h"
#include <mlpack/methods/naive_bayes/naive_bayes_classifier.hpp>
#include <mlpack/core.hpp>
// including helper functions for converting between arma structures and arrays
#include "../../helper_files/helper.hpp"
// some of the most used namespaces
using namespace arma;
using namespace mlpack;
using namespace std;
using namespace mlpack::naive_bayes;
// Global Variable of the NaiveBayesClassifier object so it can be accessed from all functions
NaiveBayesClassifier<mat> naiveBayesClassifier;
// TODO:
// input: const MatType & data,
// const arma::Row< size_t > & labels,
// const size_t numClasses,
// const bool incrementalVariance = false,
// const double epsilon = 1e-10
// output:
// description:
void initModelWithTrain(float *dataMatArr, SP_integer dataMatSize, SP_integer dataMatRowNum, float *labelsArr, SP_integer labelsArrSize,
SP_integer numClasses, SP_integer incrementalVariance, double epsilon)
{
// convert the Prolog arrays to arma::mat
mat data = convertArrayToMat(dataMatArr, dataMatSize, dataMatRowNum);
// convert the Prolog arrays to arma::rowvec
Row<size_t> labelsVector = convertArrayToVec(labelsArr, labelsArrSize);
naiveBayesClassifier = NaiveBayesClassifier(data, labelsVector, numClasses, (incrementalVariance == 1), epsilon);
}
// TODO:
// input: const size_t dimensionality = 0,
// const size_t numClasses = 0,
// const double epsilon = 1e-10
// output:
// description:
void initModelNoTrain(SP_integer dimensionality, SP_integer numClasses, double epsilon)
{
naiveBayesClassifier = NaiveBayesClassifier(dimensionality, numClasses, epsilon);
}
/*
// TODO: creates an error
// input: const VecType & point,
// size_t & prediction <-,
// ProbabilitiesVecType & probabilities <-
// output:
// description:
void classifyPoint(float *pointArr, SP_integer pointArrSize, SP_integer *prediction, float **probsArr, SP_integer *probsArrSize)
{
// convert the Prolog arrays to arma::rowvec
vec pointVector = convertArrayToRowvec(pointArr, pointArrSize);
// get the ReturnVector
vec probsReturnVector;
size_t predictionReturn;
naiveBayesClassifier.Classify(pointVector, predictionReturn, probsReturnVector);
*prediction = predictionReturn;
// return the Vector lenght
*probsArrSize = probsReturnVector.n_elem;
// return the Vector as Array
*probsArr = convertToArray(probsReturnVector);
}
*/
// TODO:
// input: const MatType & data,
// arma::Row< size_t > & predictions <-,
// ProbabilitiesMatType & probabilities <-
// output:
// description:
void classifyMatrix(float *dataMatArr, SP_integer dataMatSize, SP_integer dataMatRowNum, float **predicArr, SP_integer *predicArrSize, float **probsMatArr, SP_integer *probsMatColNum, SP_integer *probsMatRowNum)
{
// convert the Prolog arrays to arma::mat
mat data = convertArrayToMat(dataMatArr, dataMatSize, dataMatRowNum);
// get the ReturnVector
Row<size_t> predicReturnVector;
// get the ReturnMat
mat probsReturnMat;
naiveBayesClassifier.Classify(data, predicReturnVector, probsReturnMat);
// return the Vector lenght
*predicArrSize = predicReturnVector.n_elem;
// return the Vector as Array
*predicArr = convertToArray(predicReturnVector);
// return the Matrix dimensions
*probsMatColNum = probsReturnMat.n_cols;
*probsMatRowNum = probsReturnMat.n_rows;
// return the Matrix as one long Array
*probsMatArr = convertToArray(probsReturnMat);
}
// TODO:
// input:
// output: mat sample means
// description:
void means(float **meansMatArr, SP_integer *meansMatColNum, SP_integer *meansMatRowNum)
{
// get the ReturnMat
mat meansReturnMat = naiveBayesClassifier.Means();
// return the Matrix dimensions
*meansMatColNum = meansReturnMat.n_cols;
*meansMatRowNum = meansReturnMat.n_rows;
// return the Matrix as one long Array
*meansMatArr = convertToArray(meansReturnMat);
}
// TODO:
// input:
// output: mat prior probabilities
// description:
void probabilities(float **probsMatArr, SP_integer *probsMatColNum, SP_integer *probsMatRowNum)
{
// get the ReturnMat
mat probsReturnMat = naiveBayesClassifier.Probabilities();
// return the Matrix dimensions
*probsMatColNum = probsReturnMat.n_cols;
*probsMatRowNum = probsReturnMat.n_rows;
// return the Matrix as one long Array
*probsMatArr = convertToArray(probsReturnMat);
}
// TODO:
// input: const MatType & data,
// const arma::Row< size_t > & labels,
// const size_t numClasses,
// const bool incremental = true
// output:
// description:
void trainMatrix(float *dataMatArr, SP_integer dataMatSize, SP_integer dataMatRowNum, float *labelsArr, SP_integer labelsArrSize,
SP_integer numClasses, SP_integer incrementalVariance)
{
// convert the Prolog arrays to arma::mat
mat data = convertArrayToMat(dataMatArr, dataMatSize, dataMatRowNum);
// convert the Prolog arrays to arma::rowvec
Row<size_t> labelsVector = convertArrayToVec(labelsArr, labelsArrSize);
naiveBayesClassifier.Train(data, labelsVector, numClasses, (incrementalVariance == 1));
}
// TODO:
// input: const VecType & point,
// const size_t label
// output:
// description:
void trainPoint(float *pointArr, SP_integer pointArrSize, SP_integer label)
{
// convert the Prolog arrays to arma::rowvec
rowvec pointVector = convertArrayToRowvec(pointArr, pointArrSize);
naiveBayesClassifier.Train(pointVector, label);
}
// TODO:
// input:
// output: mat sample variances
// description:
void variances(float **variancesMatArr, SP_integer *variancesMatColNum, SP_integer *variancesMatRowNum)
{
// get the ReturnMat
mat variancesReturnMat = naiveBayesClassifier.Variances();
// return the Matrix dimensions
*variancesMatColNum = variancesReturnMat.n_cols;
*variancesMatRowNum = variancesReturnMat.n_rows;
// return the Matrix as one long Array
*variancesMatArr = convertToArray(variancesReturnMat);
}
// in file 'Code/User/snippets/javascript.json'
/*
{
"For Loop": {
"prefix": ["for", "for-const"],
"body": ["for (const ${2:element} of ${1:array}) {", "\t$0", "}"],
"description": "A for loop."
}
}
*/
\ No newline at end of file
:- module(naive_bayes_classifier, [ initModelWithTrain/8,
initModelNoTrain/3,
classifyMatrix/8,
means/3,
probabilities/3,
trainMatrix/7,
trainPoint/3,
variances/3]).
%% requirements of library(struct)
:- load_files(library(str_decl),
[when(compile_time), if(changed)]).
%% needed for using the array type
:- use_module(library(structs)).
:- use_module('../../helper_files/helper.pl').
%% type definitions for the float array
:- foreign_type
float32 = float_32,
float_array = array(float32).
%% definitions for the connected function
%% TODO:
%% input:
%% output:
%% description:
foreign(initModelWithTrain, c, initModelWithTrain(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +integer, +float32)).
%% TODO:
%% input:
%% output:
%% description:
foreign(initModelNoTrain, c, initModelNoTrain(+integer, +integer, +float32)).
%% TODO:
%% input:
%% output:
%% description:
%%foreign(classifyPoint, c, classifyPoint(+pointer(float_array), +integer, -integer, -pointer(float_array), -integer)).
%% TODO:
%% input:
%% output:
%% description:
foreign(classifyMatrix, c, classifyMatrix(+pointer(float_array), +integer, +integer, -pointer(float_array), -integer, -pointer(float_array), -integer, -integer)).
%% TODO:
%% input:
%% output:
%% description:
foreign(means, c, means(-pointer(float_array), -integer, -integer)).
%% TODO:
%% input:
%% output:
%% description:
foreign(probabilities, c, probabilities(-pointer(float_array), -integer, -integer)).
%% TODO:
%% input:
%% output:
%% description:
foreign(trainMatrix, c, trainMatrix(+pointer(float_array), +integer, +integer, +pointer(float_array), +integer, +integer, +integer)).
%% TODO:
%% input:
%% output:
%% description:
foreign(trainPoint, c, trainPoint(+pointer(float_array), +integer, +integer)).
%% TODO:
%% input:
%% output:
%% description:
foreign(variances, c, variances(-pointer(float_array), -integer, -integer)).
%% +integer , +float32, +string
%% [-integer] , [-float32], [-string]
%% matrix input
%% +pointer(float_array), +integer, +integer
%% array input
%% +pointer(float_array), +integer
%% matrix return
%% -pointer(float_array), -integer, -integer
%% array return
%% -pointer(float_array), -integer
%% Defines the functions that get connected from main.cpp
foreign_resource(naive_bayes_classifier, [ initModelWithTrain,
initModelNoTrain,
classifyMatrix,
means,
probabilities,
trainMatrix,
trainPoint,
variances]).
:- load_foreign_resource(naive_bayes_classifier).
\ No newline at end of file
:- use_module(library(plunit)).
:- use_module(naive_bayes_classifier).
:- use_module('../../helper_files/helper.pl').
reset_Model :-
initModel(1,0,50,0.0001).
:- begin_tests(lists).
%% alpha tests
test(alpha_std_init) :-
reset_Model,
alpha(0).
test(alpha_wrong_input, fail) :-
reset_Model,
alpha(1).
test(alpha_after_train, A =:= 9223372036854775808) :-
reset_Model,
convert_list_to_float_array([5.1,3.5,1.4,4.9,3.0,1.4,4.7,3.2,1.3,4.6,3.1,1.5],3, array(Xsize, Xrownum, X)),
convert_list_to_float_array([0.2,0.2,0.2,0.2], array(Ysize, Y)),
train(X,Xsize, Xrownum,Y, Ysize),
alpha(A).
%% train tests
test(correct_train) :-
reset_Model,
convert_list_to_float_array([5.1,3.5,1.4,4.9,3.0,1.4,4.7,3.2,1.3,4.6,3.1,1.5],3, array(Xsize, Xrownum, X)),
convert_list_to_float_array([0.2,0.2,0.2,0.2], array(Ysize, Y)),
train(X,Xsize, Xrownum,Y, Ysize).
test(false_train, fail) :-
reset_Model,
convert_list_to_float_array([],3, array(Xsize, Xrownum, X)),
convert_list_to_float_array([0.2,0.2,0.2,0.2], array(Ysize, Y)),
train(X,Xsize, Xrownum,Y, Ysize).
test(false_train2, fail) :-
reset_Model,
convert_list_to_float_array([],0, array(Xsize, Xrownum, X)),
convert_list_to_float_array([0.2,0.2,0.2,0.2], array(Ysize, Y)),
train(X,Xsize, Xrownum,Y, Ysize).
test(false_train3, fail) :-
reset_Model,
convert_list_to_float_array([1,2],0, array(Xsize, Xrownum, X)),
convert_list_to_float_array([0.2,0.2,0.2,0.2], array(Ysize, Y)),
train(X,Xsize, Xrownum,Y, Ysize).
test(false_train3, fail) :-
reset_Model,
convert_list_to_float_array([1,2,44,3],3, array(Xsize, Xrownum, X)),
convert_list_to_float_array([0.2,0.2,0.2,0.2], array(Ysize, Y)),
train(X,Xsize, Xrownum,Y, Ysize).
test(false_train4) :-
reset_Model,
convert_list_to_float_array([1,2,44,3],2, array(Xsize, Xrownum, X)),
convert_list_to_float_array([0.2,0.2,0.2,0.2], array(Ysize, Y)),
train(X,Xsize, Xrownum,Y, Ysize).
:- end_tests(lists).
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment