Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Prolog mlpack Library
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
general
stups
Prolog mlpack Library
Commits
3df5ffd5
Commit
3df5ffd5
authored
2 years ago
by
Jakhes
Browse files
Options
Downloads
Patches
Plain Diff
Adding pca tests
parent
28c7c521
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/methods/pca/pca.cpp
+2
-2
2 additions, 2 deletions
src/methods/pca/pca.cpp
src/methods/pca/pca.pl
+9
-3
9 additions, 3 deletions
src/methods/pca/pca.pl
src/methods/pca/pca_test.pl
+162
-27
162 additions, 27 deletions
src/methods/pca/pca_test.pl
with
173 additions
and
32 deletions
src/methods/pca/pca.cpp
+
2
−
2
View file @
3df5ffd5
...
@@ -58,7 +58,7 @@ void pca(SP_integer scaleData, char const *decompositionPolicy,
...
@@ -58,7 +58,7 @@ void pca(SP_integer scaleData, char const *decompositionPolicy,
{
{
PCA
<
RandomizedSVDPolicy
>
((
scaleData
==
1
)).
Apply
(
data
,
transformedReturnMat
,
eigValReturnVector
,
eigVecReturnMat
);
PCA
<
RandomizedSVDPolicy
>
((
scaleData
==
1
)).
Apply
(
data
,
transformedReturnMat
,
eigValReturnVector
,
eigVecReturnMat
);
}
}
else
if
(
strcmp
(
decompositionPolicy
,
"randomized
-
block
-
krylov"
)
==
0
)
else
if
(
strcmp
(
decompositionPolicy
,
"randomized
_
block
_
krylov"
)
==
0
)
{
{
PCA
<
RandomizedBlockKrylovSVDPolicy
>
((
scaleData
==
1
)).
Apply
(
data
,
transformedReturnMat
,
eigValReturnVector
,
eigVecReturnMat
);
PCA
<
RandomizedBlockKrylovSVDPolicy
>
((
scaleData
==
1
)).
Apply
(
data
,
transformedReturnMat
,
eigValReturnVector
,
eigVecReturnMat
);
}
}
...
...
This diff is collapsed.
Click to expand it.
src/methods/pca/pca.pl
+
9
−
3
View file @
3df5ffd5
...
@@ -39,7 +39,8 @@ pca(ScaleData, DecompositionPolicy, DataList, DataRows, TransformedList, TDataCo
...
@@ -39,7 +39,8 @@ pca(ScaleData, DecompositionPolicy, DataList, DataRows, TransformedList, TDataCo
convert_float_array_to_list
(
Y
,
Ysize
,
EigValList
),
convert_float_array_to_list
(
Y
,
Ysize
,
EigValList
),
convert_float_array_to_2d_list
(
Z
,
ZCols
,
ZRows
,
EigVecList
).
convert_float_array_to_2d_list
(
Z
,
ZCols
,
ZRows
,
EigVecList
).
foreign
(
pca
,
c
,
pcaI
(
+
integer
,
+
string
,
foreign
(
pca
,
c
,
pcaI
(
+
integer
,
+
string
,
+
pointer
(
float_array
),
+
integer
,
+
integer
,
+
pointer
(
float_array
),
+
integer
,
+
integer
,
-
pointer
(
float_array
),
-
integer
,
-
integer
,
-
pointer
(
float_array
),
-
integer
,
-
integer
,
-
pointer
(
float_array
),
-
integer
,
-
pointer
(
float_array
),
-
integer
,
...
@@ -61,11 +62,13 @@ foreign(pca, c, pcaI( +integer, +string,
...
@@ -61,11 +62,13 @@ foreign(pca, c, pcaI( +integer, +string,
%% Define the new dimensionality of the data with newDimension.
%% Define the new dimensionality of the data with newDimension.
%%
%%
pcaDimReduction
(
ScaleData
,
DecompositionPolicy
,
DataList
,
DataRows
,
NewDim
,
TransformedList
,
TDataCols
,
Variance
)
:-
pcaDimReduction
(
ScaleData
,
DecompositionPolicy
,
DataList
,
DataRows
,
NewDim
,
TransformedList
,
TDataCols
,
Variance
)
:-
NewDim
>
0
,
convert_list_to_float_array
(
DataList
,
DataRows
,
array
(
Xsize
,
Xrows
,
X
)),
convert_list_to_float_array
(
DataList
,
DataRows
,
array
(
Xsize
,
Xrows
,
X
)),
pcaDimReductionI
(
ScaleData
,
DecompositionPolicy
,
X
,
Xsize
,
Xrows
,
NewDim
,
TData
,
TDataCols
,
TDataRows
,
Variance
),
pcaDimReductionI
(
ScaleData
,
DecompositionPolicy
,
X
,
Xsize
,
Xrows
,
NewDim
,
TData
,
TDataCols
,
TDataRows
,
Variance
),
convert_float_array_to_2d_list
(
TData
,
TDataCols
,
TDataRows
,
TransformedList
).
convert_float_array_to_2d_list
(
TData
,
TDataCols
,
TDataRows
,
TransformedList
).
foreign
(
pcaDimReduction
,
c
,
pcaDimReductionI
(
+
integer
,
+
string
,
foreign
(
pcaDimReduction
,
c
,
pcaDimReductionI
(
+
integer
,
+
string
,
+
pointer
(
float_array
),
+
integer
,
+
integer
,
+
pointer
(
float_array
),
+
integer
,
+
integer
,
+
integer
,
+
integer
,
-
pointer
(
float_array
),
-
integer
,
-
integer
,
-
pointer
(
float_array
),
-
integer
,
-
integer
,
...
@@ -87,11 +90,14 @@ foreign(pcaDimReduction, c, pcaDimReductionI( +integer, +string,
...
@@ -87,11 +90,14 @@ foreign(pcaDimReduction, c, pcaDimReductionI( +integer, +string,
%% Define to which variance the data should be reduced to.
%% Define to which variance the data should be reduced to.
%%
%%
pcaVarianceDimReduction
(
ScaleData
,
DecompositionPolicy
,
DataList
,
DataRows
,
VarRetained
,
TransformedList
,
TDataCols
,
Variance
)
:-
pcaVarianceDimReduction
(
ScaleData
,
DecompositionPolicy
,
DataList
,
DataRows
,
VarRetained
,
TransformedList
,
TDataCols
,
Variance
)
:-
VarRetained
>=
0.0
,
VarRetained
=<
1.0
,
convert_list_to_float_array
(
DataList
,
DataRows
,
array
(
Xsize
,
Xrows
,
X
)),
convert_list_to_float_array
(
DataList
,
DataRows
,
array
(
Xsize
,
Xrows
,
X
)),
pcaVarianceDimReductionI
(
ScaleData
,
DecompositionPolicy
,
X
,
Xsize
,
Xrows
,
VarRetained
,
TData
,
TDataCols
,
TDataRows
,
Variance
),
pcaVarianceDimReductionI
(
ScaleData
,
DecompositionPolicy
,
X
,
Xsize
,
Xrows
,
VarRetained
,
TData
,
TDataCols
,
TDataRows
,
Variance
),
convert_float_array_to_2d_list
(
TData
,
TDataCols
,
TDataRows
,
TransformedList
).
convert_float_array_to_2d_list
(
TData
,
TDataCols
,
TDataRows
,
TransformedList
).
foreign
(
pcaVarianceDimReduction
,
c
,
pcaVarianceDimReductionI
(
+
integer
,
+
string
,
foreign
(
pcaVarianceDimReduction
,
c
,
pcaVarianceDimReductionI
(
+
integer
,
+
string
,
+
pointer
(
float_array
),
+
integer
,
+
integer
,
+
pointer
(
float_array
),
+
integer
,
+
integer
,
+
float32
,
+
float32
,
-
pointer
(
float_array
),
-
integer
,
-
integer
,
-
pointer
(
float_array
),
-
integer
,
-
integer
,
...
...
This diff is collapsed.
Click to expand it.
src/methods/pca/pca_test.pl
+
162
−
27
View file @
3df5ffd5
...
@@ -7,49 +7,184 @@
...
@@ -7,49 +7,184 @@
:-
use_module
(
'../../helper_files/helper.pl'
).
:-
use_module
(
'../../helper_files/helper.pl'
).
:-
begin_tests
(
lists
).
test
(
alpha_after_train
)
:-
%%
open
(
'/home/afkjakhes/eclipse-workspace/prolog-mlpack-libary/src/data_csv/iris.csv'
,
read
,
A
),
%% TESTING predicate pca/9
take_csv_row
(
A
,
10
,
B
),
%%
convert_list_to_float_array
(
B
,
10
,
array
(
Xsize
,
Xrownum
,
X
)),
:-
begin_tests
(
pca
).
pca
(
0
,
randomized
,
X
,
Xsize
,
Xrownum
,
Tansfomed
,
TCols
,
TRows
,
EigVal
,
EigValSize
,
EigVec
,
EigVecCols
,
EigVecRows
),
convert_float_array_to_2d_list
(
Tansfomed
,
TCols
,
TRows
,
TOut
),
%% Failure Tests
convert_float_array_to_list
(
EigVal
,
EigValSize
,
EigValOut
),
convert_float_array_to_2d_list
(
EigVec
,
EigVecCols
,
EigVecRows
,
EigVecOut
),
test
(
pca_Wrong_DecompositionPolicy_Input
,
[
error
(
domain_error
(
'The given DecompositionPolicy is unkown!'
,
wrongInput
),
_
)])
:-
print
(
TOut
).
pca
(
0
,
wrongInput
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
_
,
_
,
_
,
_
,
_
).
%% Successful Tests
test
(
pca_Normal_Use_Exact
)
:-
pca
(
0
,
exact
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
TDataList
,
_
,
EigValList
,
EigVecList
,
_
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nEigenValues: '
),
print
(
EigValList
),
print
(
'\nEigenVectors: '
),
print
(
EigVecList
).
test
(
pca_Normal_Use_Randomized
)
:-
pca
(
0
,
randomized
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
TDataList
,
_
,
EigValList
,
EigVecList
,
_
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nEigenValues: '
),
print
(
EigValList
),
print
(
'\nEigenVectors: '
),
print
(
EigVecList
).
test
(
pca_Normal_Use_Randomized_Block_Krylov
)
:-
pca
(
0
,
randomized_block_krylov
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
TDataList
,
_
,
EigValList
,
EigVecList
,
_
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nEigenValues: '
),
print
(
EigValList
),
print
(
'\nEigenVectors: '
),
print
(
EigVecList
).
test
(
pca_Normal_Use_Quic
)
:-
pca
(
0
,
quic
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
TDataList
,
_
,
EigValList
,
EigVecList
,
_
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nEigenValues: '
),
print
(
EigValList
),
print
(
'\nEigenVectors: '
),
print
(
EigVecList
).
test
(
pca_CSV_Input
)
:-
open
(
'src/data_csv/iris2.csv'
,
read
,
File
),
take_csv_row
(
File
,
skipFirstRow
,
10
,
Data
),
pca
(
1
,
exact
,
Data
,
4
,
TDataList
,
_
,
EigValList
,
EigVecList
,
_
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nEigenValues: '
),
print
(
EigValList
),
print
(
'\nEigenVectors: '
),
print
(
EigVecList
).
:-
end_tests
(
pca
).
:-
end_tests
(
lists
).
%%
%%
%% TESTING predicate p
redicate/10
%% TESTING predicate p
caDimReduction/8
%%
%%
:-
begin_tests
(
p
redicate
).
:-
begin_tests
(
p
caDimReduction
).
%% Failure Tests
%% Failure Tests
test
(
testDescription
,
[
error
(
domain_error
(
'expectation'
,
culprit
),
_
)])
:-
test
(
pcaDimReduction_Wrong_DecompositionPolicy_Input
,
[
error
(
domain_error
(
'The given DecompositionPolicy is unkown!'
,
wrongInput
),
_
)])
:-
reset_Model_No_Train
(
perceptron
),
pcaDimReduction
(
0
,
wrongInput
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
2
,
_
,
_
,
_
).
train
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
0
,
0
,
0
],
2
,
culprit
,
50
,
0.0001
,
_
).
test
(
testDescription2
,
[
error
(
_
,
system_error
(
'The values of the Label have to start at 0 and be >= 0 and < the given numClass!'
))])
:-
test
(
pcaDimReduction_Negative_NewDimension
,
fail
)
:-
reset_Model_No_Train
(
perceptron
),
pcaDimReduction
(
0
,
randomized
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
-
2
,
_
,
_
,
_
).
train
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
1
,
0
,
2
],
2
,
perceptron
,
50
,
0.0001
,
_
).
test
(
pcaDimReduction_Too_Big_NewDimension
,
fail
)
:-
pcaDimReduction
(
0
,
randomized
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
5
,
_
,
_
,
_
).
%% Successful Tests
%% Successful Tests
test
(
testDescription3
,
[
true
(
Error
=:=
1
)])
:-
test
(
pcaDimReduction_Normal_Use_Exact
)
:-
reset_Model_No_Train
(
perceptron
),
pcaDimReduction
(
0
,
exact
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
2
,
TDataList
,
_
,
RetainedVar
),
train
([
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
[
0
,
0
,
0
,
0
],
2
,
perceptron
,
50
,
0.0001
,
Error
).
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaDimReduction_Normal_Use_Randomized
)
:-
pcaDimReduction
(
0
,
randomized
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
2
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaDimReduction_Normal_Use_Randomized_Block_Krylov
)
:-
pcaDimReduction
(
0
,
randomized_block_krylov
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
2
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaDimReduction_Normal_Use_Quic
)
:-
pcaDimReduction
(
0
,
quic
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
2
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaDimReduction_CSV_Input
)
:-
open
(
'src/data_csv/iris2.csv'
,
read
,
File
),
take_csv_row
(
File
,
skipFirstRow
,
10
,
Data
),
pcaDimReduction
(
1
,
exact
,
Data
,
4
,
2
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
:-
end_tests
(
pcaDimReduction
).
%%
%% TESTING predicate pcaVarianceDimReduction/8
%%
:-
begin_tests
(
pcaVarianceDimReduction
).
%% Failure Tests
test
(
pcaVarianceDimReduction_Wrong_DecompositionPolicy_Input
,
[
error
(
domain_error
(
'The given DecompositionPolicy is unkown!'
,
wrongInput
),
_
)])
:-
pcaVarianceDimReduction
(
0
,
wrongInput
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.5
,
_
,
_
,
_
).
test
(
pcaVarianceDimReduction_Bad_ToRetainVar_Input
,
fail
)
:-
pcaVarianceDimReduction
(
0
,
randomized
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
-
1.0
,
_
,
_
,
_
),
pcaVarianceDimReduction
(
0
,
randomized
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
1.1
,
_
,
_
,
_
).
%% Successful Tests
test
(
testDescription4
,
[
true
(
Error
=:=
0.9797958971132711
)])
:-
test
(
pcaVarianceDimReduction_Normal_Use_Exact
)
:-
reset_Model_No_Train
(
perceptron
),
pcaVarianceDimReduction
(
0
,
exact
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.5
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaVarianceDimReduction_Normal_Use_Randomized
)
:-
pcaVarianceDimReduction
(
0
,
randomized
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.5
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaVarianceDimReduction_Normal_Use_Randomized_Block_Krylov
)
:-
pcaVarianceDimReduction
(
0
,
randomized_block_krylov
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.5
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaVarianceDimReduction_Normal_Use_Quic
)
:-
pcaVarianceDimReduction
(
0
,
quic
,
[
5.1
,
3.5
,
1.4
,
4.9
,
3.0
,
1.4
,
4.7
,
3.2
,
1.3
,
4.6
,
3.1
,
1.5
],
3
,
0.5
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
test
(
pcaVarianceDimReduction_CSV_Input
)
:-
open
(
'src/data_csv/iris2.csv'
,
read
,
File
),
open
(
'src/data_csv/iris2.csv'
,
read
,
File
),
take_csv_row
(
File
,
skipFirstRow
,
10
,
Data
),
take_csv_row
(
File
,
skipFirstRow
,
10
,
Data
),
train
(
Data
,
4
,
[
0
,
1
,
0
,
1
,
1
,
0
,
1
,
1
,
1
,
0
],
2
,
perceptron
,
50
,
0.0001
,
Error
).
pcaVarianceDimReduction
(
1
,
exact
,
Data
,
4
,
0.2
,
TDataList
,
_
,
RetainedVar
),
print
(
'\nTransformed Data: '
),
print
(
TDataList
),
print
(
'\nRetained Variance: '
),
print
(
RetainedVar
).
:-
end_tests
(
p
redicate
).
:-
end_tests
(
p
caVarianceDimReduction
).
run_pca_tests
:-
run_pca_tests
:-
run_tests
.
run_tests
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment