Skip to content
Snippets Groups Projects
Select Git revision
  • ea6eaccfe49022f936e5481f448ba87b479f5e9b
  • main default protected
2 results

common.mk

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    run_clm.py 23.27 KiB
    #!/usr/bin/env python
    # coding=utf-8
    # Copyright 2020 The HuggingFace Inc. team. All rights reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    """
    Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
    Modified from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py
    Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
    https://huggingface.co/models?filter=text-generation
    """
    # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
    
    import logging
    import math
    import os
    import sys
    from dataclasses import dataclass, field
    from itertools import chain
    from typing import Optional
    
    import datasets
    from datasets import load_dataset
    from tqdm import tqdm
    from torch.utils.data import DataLoader
    import torch
    import json
    
    import transformers
    from transformers import (
        CONFIG_MAPPING,
        MODEL_FOR_CAUSAL_LM_MAPPING,
        AutoConfig,
        AutoModelForCausalLM,
        AutoTokenizer,
        HfArgumentParser,
        TrainingArguments,
        DataCollatorForTokenClassification,
        is_torch_tpu_available,
        set_seed,
    )
    from transformers.trainer_utils import get_last_checkpoint
    from transformers.utils import check_min_version
    from transformers.utils.versions import require_version
    from convlab.base_models.gpt.trainer import DumpTokenLossTrainer
    
    
    # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
    check_min_version("4.17.0")
    
    require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
    
    logger = logging.getLogger(__name__)
    
    
    MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
    MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
    
    
    @dataclass
    class ModelArguments:
        """
        Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
        """
    
        model_name_or_path: Optional[str] = field(
            default=None,
            metadata={
                "help": "The model checkpoint for weights initialization."
                "Don't set if you want to train a model from scratch."
            },
        )
        model_type: Optional[str] = field(
            default=None,
            metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
        )
        config_overrides: Optional[str] = field(
            default=None,
            metadata={
                "help": "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            },
        )
        config_name: Optional[str] = field(
            default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
        )
        tokenizer_name: Optional[str] = field(
            default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
        )
        cache_dir: Optional[str] = field(
            default=None,
            metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
        )
        use_fast_tokenizer: bool = field(
            default=True,
            metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
        )
        truncation_side: Optional[str] = field(
            default="right",
            metadata={"help": "Which side to truncate, left or right."}
        )
        model_revision: str = field(
            default="main",
            metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
        )
        use_auth_token: bool = field(
            default=False,
            metadata={
                "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            },
        )
        resize_position_embeddings: Optional[bool] = field(
            default=None,
            metadata={
                "help": "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
                        "the model's position embeddings."
            },
        )
    
        def __post_init__(self):
            if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
                raise ValueError(
                    "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
                )
    
    
    @dataclass
    class DataTrainingArguments:
        """
        Arguments pertaining to what data we are going to input our model for training and eval.
        """
    
        dataset_name: Optional[str] = field(
            default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
        )
        dataset_config_name: Optional[str] = field(
            default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
        )
        source_column: Optional[str] = field(
            default=None,
            metadata={"help": "The name of the column in the datasets containing the texts."},
        )
        train_file: Optional[str] = field(
            default=None, metadata={"help": "The input training data file (a text, jsonlines or csv file)."}
        )
        validation_file: Optional[str] = field(
            default=None,
            metadata={
                "help": "An optional input evaluation data file to evaluate the metrics on (a text, jsonlines or csv file)."
            },
        )
        dump_eval_loss_to: Optional[str] = field(
            default=None, metadata={"help": "Where to dump the tokens' losses in the evaluation data, default not to"}
        )
        overwrite_cache: bool = field(
            default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
        )
        preprocessing_num_workers: Optional[int] = field(
            default=None,
            metadata={"help": "The number of processes to use for the preprocessing."},
        )
        max_length: Optional[int] = field(
            default=1024,
            metadata={
                "help": "The maximum total input sequence length after tokenization. Sequences longer "
                        "than this will be truncated, sequences shorter will be padded."
            },
        )
        pad_to_max_length: bool = field(
            default=False,
            metadata={
                "help": "Whether to pad all samples to model maximum sentence length. "
                        "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                        "efficient on GPU but very bad for TPU."
            },
        )
        max_train_samples: Optional[int] = field(
            default=None,
            metadata={
                "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            },
        )
        max_eval_samples: Optional[int] = field(
            default=None,
            metadata={
                "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            },
        )
        ignore_pad_token_for_loss: bool = field(
            default=True,
            metadata={
                "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
            },
        )
        validation_split_percentage: Optional[int] = field(
            default=5,
            metadata={
                "help": "The percentage of the train set used as validation set in case there's no validation split"
            },
        )
        keep_linebreaks: bool = field(
            default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
        )
    
        def __post_init__(self):
            if self.dataset_name is None and self.train_file is None and self.validation_file is None:
                raise ValueError("Need either a dataset name or a training/validation file.")
            else:
                if self.train_file is not None:
                    extension = self.train_file.split(".")[-1]
                    assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
                if self.validation_file is not None:
                    extension = self.validation_file.split(".")[-1]
                    assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
    
    
    def main():
        # See all possible arguments in src/transformers/training_args.py
        # or by passing the --help flag to this script.
        # We now keep distinct sets of args, for a cleaner separation of concerns.
    
        parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
        if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
            # If we pass only one argument to the script and it's the path to a json file,
            # let's parse it to get our arguments.
            model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
        else:
            model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    
        # Setup logging
        logging.basicConfig(
            format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
            datefmt="%m/%d/%Y %H:%M:%S",
            handlers=[logging.StreamHandler(sys.stdout)],
        )
        log_level = training_args.get_process_log_level()
        logger.setLevel(log_level)
        datasets.utils.logging.set_verbosity(log_level)
        transformers.utils.logging.set_verbosity(log_level)
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    
        # Log on each process the small summary:
        logger.warning(
            f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
            + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
        )
        logger.info(f"Training/evaluation parameters {training_args}")
    
        # Detecting last checkpoint.
        last_checkpoint = None
        if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
            last_checkpoint = get_last_checkpoint(training_args.output_dir)
            if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
                raise ValueError(
                    f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                    "Use --overwrite_output_dir to overcome."
                )
            elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
                logger.info(
                    f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                    "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
                )
    
        # Set seed before initializing model.
        set_seed(training_args.seed)
    
        # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
        # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
        # (the dataset will be downloaded automatically from the datasets Hub).
        #
        # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
        # 'text' is found. You can easily tweak this behavior (see below).
        #
        # In distributed training, the load_dataset function guarantee that only one local process can concurrently
        # download the dataset.
        if data_args.dataset_name is not None:
            # Downloading and loading a dataset from the hub.
            raw_datasets = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
            if "validation" not in raw_datasets.keys():
                raw_datasets["validation"] = load_dataset(
                    data_args.dataset_name,
                    data_args.dataset_config_name,
                    split=f"train[:{data_args.validation_split_percentage}%]",
                    cache_dir=model_args.cache_dir,
                    use_auth_token=True if model_args.use_auth_token else None,
                )
                raw_datasets["train"] = load_dataset(
                    data_args.dataset_name,
                    data_args.dataset_config_name,
                    split=f"train[{data_args.validation_split_percentage}%:]",
                    cache_dir=model_args.cache_dir,
                    use_auth_token=True if model_args.use_auth_token else None,
                )
        else:
            data_files = {}
            dataset_args = {}
            if data_args.train_file is not None:
                data_files["train"] = data_args.train_file
            if data_args.validation_file is not None:
                data_files["validation"] = data_args.validation_file
            extension = (
                data_args.train_file.split(".")[-1]
                if data_args.train_file is not None
                else data_args.validation_file.split(".")[-1]
            )
            if extension == "txt":
                extension = "text"
                dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
            raw_datasets = load_dataset(
                extension,
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
                **dataset_args,
            )
            # If no validation data is there, validation_split_percentage will be used to divide the dataset.
            if "validation" not in raw_datasets.keys():
                raw_datasets["validation"] = load_dataset(
                    extension,
                    data_files=data_files,
                    split=f"train[:{data_args.validation_split_percentage}%]",
                    cache_dir=model_args.cache_dir,
                    use_auth_token=True if model_args.use_auth_token else None,
                    **dataset_args,
                )
                raw_datasets["train"] = load_dataset(
                    extension,
                    data_files=data_files,
                    split=f"train[{data_args.validation_split_percentage}%:]",
                    cache_dir=model_args.cache_dir,
                    use_auth_token=True if model_args.use_auth_token else None,
                    **dataset_args,
                )
    
        # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
        # https://huggingface.co/docs/datasets/loading_datasets.html.
    
        # Load pretrained model and tokenizer
        #
        # Distributed training:
        # The .from_pretrained methods guarantee that only one local process can concurrently
        # download model & vocab.
        config_kwargs = {
            "cache_dir": model_args.cache_dir,
            "revision": model_args.model_revision,
            "use_auth_token": True if model_args.use_auth_token else None,
        }
        if model_args.config_name:
            config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
        elif model_args.model_name_or_path:
            config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
        else:
            config = CONFIG_MAPPING[model_args.model_type]()
            logger.warning("You are instantiating a new config instance from scratch.")
            if model_args.config_overrides is not None:
                logger.info(f"Overriding config: {model_args.config_overrides}")
                config.update_from_string(model_args.config_overrides)
                logger.info(f"New config: {config}")
    
        tokenizer_kwargs = {
            "cache_dir": model_args.cache_dir,
            "use_fast": model_args.use_fast_tokenizer,
            "truncation_side": model_args.truncation_side,
            "revision": model_args.model_revision,
            "use_auth_token": True if model_args.use_auth_token else None,
        }
        if model_args.tokenizer_name:
            tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
        elif model_args.model_name_or_path:
            tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
        else:
            raise ValueError(
                "You are instantiating a new tokenizer from scratch. This is not supported by this script."
                "You can do it from another script, save it, and load it from here, using --tokenizer_name."
            )
    
        if not tokenizer.pad_token:
            tokenizer.pad_token = tokenizer.eos_token
    
        if model_args.model_name_or_path:
            model = AutoModelForCausalLM.from_pretrained(
                model_args.model_name_or_path,
                from_tf=bool(".ckpt" in model_args.model_name_or_path),
                config=config,
                cache_dir=model_args.cache_dir,
                revision=model_args.model_revision,
                use_auth_token=True if model_args.use_auth_token else None,
            )
        else:
            model = AutoModelForCausalLM.from_config(config)
            n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
            logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
    
        model.resize_token_embeddings(len(tokenizer))
    
        if training_args.gradient_checkpointing:
            # use_cache=True is incompatible with gradient checkpointing.
            config.use_cache = False
    
        # Preprocessing the datasets.
        # First we tokenize all the texts.
        if training_args.do_train:
            column_names = raw_datasets["train"].column_names
        elif training_args.do_eval:
            column_names = raw_datasets["validation"].column_names
        else:
            logger.info("There is nothing to do. Please pass `do_train` and/or `do_eval`.")
            return
        if data_args.source_column is None:
            source_column = column_names[0]
        else:
            source_column = data_args.source_column
            if source_column not in column_names:
                raise ValueError(
                    f"--source_column' value '{data_args.source_column}' needs to be one of: {', '.join(column_names)}"
                )
    
        def preprocess_function(examples):
    
            inputs = []
            for i in range(len(examples[source_column])):
                if len(examples[source_column][i]) > 0:
                    inputs.append(examples[source_column][i])
            
            padding = "max_length" if data_args.pad_to_max_length else False
            model_inputs = tokenizer(inputs, max_length=data_args.max_length, padding=padding, truncation=True)
    
            # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
            # padding in the loss. Else pad in data_collator.
            if padding == "max_length" and data_args.ignore_pad_token_for_loss:
                model_inputs["labels"] = [
                    [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in model_inputs["input_ids"]
                ]
            else:
                model_inputs["labels"] = model_inputs["input_ids"].copy()
    
            return model_inputs
    
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset",
            )
        
        lm_datasets = tokenized_datasets
    
        if training_args.do_train:
            if "train" not in tokenized_datasets:
                raise ValueError("--do_train requires a train dataset")
            train_dataset = lm_datasets["train"]
            if data_args.max_train_samples is not None:
                max_train_samples = min(len(train_dataset), data_args.max_train_samples)
                train_dataset = train_dataset.select(range(max_train_samples))
    
        if training_args.do_eval:
            if "validation" not in tokenized_datasets:
                raise ValueError("--do_eval requires a validation dataset")
            eval_dataset = lm_datasets["validation"]
            if data_args.max_eval_samples is not None:
                max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
                eval_dataset = eval_dataset.select(range(max_eval_samples))
    
        # Data collator
        label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
        data_collator = DataCollatorForTokenClassification(
            tokenizer,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )
    
        training_args.dump_eval_loss_to = data_args.dump_eval_loss_to
        
        # Initialize our Trainer
        trainer = DumpTokenLossTrainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset if training_args.do_train else None,
            eval_dataset=eval_dataset if training_args.do_eval else None,
            tokenizer=tokenizer,
            # Data collator will default to DataCollatorWithPadding, so we change it.
            data_collator=data_collator,
        )
    
        # Training
        if training_args.do_train:
            checkpoint = None
            if training_args.resume_from_checkpoint is not None:
                checkpoint = training_args.resume_from_checkpoint
            elif last_checkpoint is not None:
                checkpoint = last_checkpoint
            train_result = trainer.train(resume_from_checkpoint=checkpoint)
            trainer.save_model()  # Saves the tokenizer too for easy upload
    
            metrics = train_result.metrics
            max_train_samples = (
                data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
            )
            metrics["train_samples"] = min(max_train_samples, len(train_dataset))
    
            trainer.log_metrics("train", metrics)
            trainer.save_metrics("train", metrics)
            trainer.save_state()
    
        # Evaluation
        if training_args.do_eval:
            logger.info("*** Evaluate ***")
            metrics = trainer.evaluate(metric_key_prefix="eval")
            max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
            try:
                perplexity = math.exp(metrics["eval_loss"])
            except OverflowError:
                perplexity = float("inf")
            metrics["eval_perplexity"] = perplexity
            logger.info(f"eval_perplexity: {perplexity}")
    
            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", metrics)
            
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name
    
        if training_args.push_to_hub:
            trainer.push_to_hub(**kwargs)
        else:
            trainer.create_model_card(**kwargs)
    
    
    def _mp_fn(index):
        # For xla_spawn (TPUs)
        main()
    
    
    if __name__ == "__main__":
        main()