Select Git revision
Parameters.java
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
create_data.py 4.62 KiB
import os
import json
from tqdm import tqdm
import re
from convlab2.util import load_dataset, load_nlu_data, load_dst_data, load_policy_data, load_nlg_data, load_e2e_data, load_rg_data
from convlab2.base_models.t5.nlu.serialization import serialize_dialogue_acts, deserialize_dialogue_acts, equal_da_seq
def create_rg_data(dataset, data_dir, args):
data_by_split = load_rg_data(dataset, speaker=args.speaker)
data_dir = os.path.join(data_dir, args.speaker)
os.makedirs(data_dir, exist_ok=True)
data_splits = data_by_split.keys()
file_name = os.path.join(data_dir, f"source_prefix.txt")
with open(file_name, "w") as f:
f.write("generate a system response according to the context: ")
for data_split in data_splits:
data = []
for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False):
context = ' '.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['context']])
response = f"{sample['speaker']}: {sample['utterance']}"
data.append(json.dumps({'context': context, 'response': response}, ensure_ascii=False)+'\n')
file_name = os.path.join(data_dir, f"{data_split}.json")
with open(file_name, "w", encoding='utf-8') as f:
f.writelines(data)
def create_nlu_data(dataset, data_dir, args):
data_by_split = load_nlu_data(dataset, speaker=args.speaker, use_context=args.context_window_size>0, context_window_size=args.context_window_size)
data_dir = os.path.join(data_dir, args.speaker, f'context_{args.context_window_size}')
os.makedirs(data_dir, exist_ok=True)
data_splits = data_by_split.keys()
file_name = os.path.join(data_dir, f"source_prefix.txt")
with open(file_name, "w") as f:
f.write("parse the dialogue action of the last utterance: ")
for data_split in data_splits:
data = []
for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False):
response = f"{sample['speaker']}: {sample['utterance']}"
if args.context_window_size>0:
context = ' '.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['context']]+[response])
else:
context = response
dialogue_acts_seq = serialize_dialogue_acts(sample['dialogue_acts'])
assert equal_da_seq(sample['dialogue_acts'], dialogue_acts_seq), print(sample['dialogue_acts'], dialogue_acts_seq, deserialize_dialogue_acts(dialogue_acts_seq))
data.append(json.dumps({'context': context, 'dialogue_acts_seq': dialogue_acts_seq}, ensure_ascii=False)+'\n')
file_name = os.path.join(data_dir, f"{data_split}.json")
with open(file_name, "w", encoding='utf-8') as f:
f.writelines(data)
def create_goal2dialogue_data(dataset, data_dir, args):
data_by_split = dataset
os.makedirs(data_dir, exist_ok=True)
data_splits = data_by_split.keys()
file_name = os.path.join(data_dir, f"source_prefix.txt")
with open(file_name, "w") as f:
f.write("generate a dialogue between user and system according to the user goal: ")
for data_split in data_splits:
data = []
for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False):
goal = re.sub(r'<.*?>', '', sample['goal']['description'])
dialogue = ' '.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['turns']])
data.append(json.dumps({'goal': goal, 'dialogue': dialogue}, ensure_ascii=False)+'\n')
file_name = os.path.join(data_dir, f"{data_split}.json")
with open(file_name, "w", encoding='utf-8') as f:
f.writelines(data)
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser(description="create data for seq2seq training")
parser.add_argument('--tasks', '-t', metavar='task_name', nargs='*', choices=['rg', 'nlu', 'goal2dialogue'], help='names of tasks')
parser.add_argument('--datasets', '-d', metavar='dataset_name', nargs='*', help='names of unified datasets')
parser.add_argument('--speaker', '-s', type=str, choices=['user', 'system', 'all'], help='speaker(s)')
parser.add_argument('--context_window_size', '-c', type=int, default=0, help='how many contextual utterances are considered')
args = parser.parse_args()
print(args)
for dataset_name in tqdm(args.datasets, desc='datasets'):
dataset = load_dataset(dataset_name)
for task_name in tqdm(args.tasks, desc='tasks', leave=False):
data_dir = os.path.join('data', task_name, dataset_name)
eval(f"create_{task_name}_data")(dataset, data_dir, args)