Skip to content
Snippets Groups Projects
Commit 3bd07894 authored by Michael Leuschel's avatar Michael Leuschel
Browse files

add kfG to PDA example

parent 4bd5eb80
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# PDA (Push Down Automata - Kellerautomaten) # PDA (Push Down Automata - Kellerautomaten)
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
Ein __(nichtdeterministischer) Kellerautomat__ Ein __(nichtdeterministischer) Kellerautomat__
(kurz PDA für __push-down automaton__) ist ein $6$-Tupel (kurz PDA für __push-down automaton__) ist ein $6$-Tupel
$M = (\Sigma, \Gamma, Z, \delta , z_0, \#)$, wobei $M = (\Sigma, \Gamma, Z, \delta , z_0, \#)$, wobei
* $\Sigma$ das Eingabe-Alphabet ist, * $\Sigma$ das Eingabe-Alphabet ist,
* $\Gamma$ das Kelleralphabet, * $\Gamma$ das Kelleralphabet,
* $Z$ eine endliche Menge von Zuständen, * $Z$ eine endliche Menge von Zuständen,
* $\delta : Z \times (\Sigma \cup \{\lambda\}) \times \Gamma * $\delta : Z \times (\Sigma \cup \{\lambda\}) \times \Gamma
\rightarrow \mathfrak{P}_e(Z \times \Gamma^{\ast})$ die \rightarrow \mathfrak{P}_e(Z \times \Gamma^{\ast})$ die
Überführungsfunktion, Überführungsfunktion,
* $z_0 \in Z$ der Startzustand, * $z_0 \in Z$ der Startzustand,
* $\# \in \Gamma$ das Bottom-Symbol im Keller. * $\# \in \Gamma$ das Bottom-Symbol im Keller.
Anmerkung: $\mathfrak{P}_e(Z \times \Gamma^{\ast})$ ist die Menge aller Anmerkung: $\mathfrak{P}_e(Z \times \Gamma^{\ast})$ ist die Menge aller
__endlichen__ Teilmengen von $Z \times \Gamma^{\ast}$. __endlichen__ Teilmengen von $Z \times \Gamma^{\ast}$.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
::load ::load
MACHINE PDA MACHINE PDA
/* B Modell eines PDA */ /* B Modell eines PDA */
SETS SETS
Z = {z0,z1}; // die Zustände des Automaten, z0 ist der Startzustand Z = {z0,z1}; // die Zustände des Automaten, z0 ist der Startzustand
SYMBOLE={a,b, A, BOT, lambda} /* BOT = # = Bottom-Symbol im Keller*/ SYMBOLE={a,b, A, BOT, lambda} /* BOT = # = Bottom-Symbol im Keller*/
DEFINITIONS DEFINITIONS
Σ == {a,b}; // das Eingabe-Alphabet Σ == {a,b}; // das Eingabe-Alphabet
Γ == {A,BOT}; // das Kelleralphabet Γ == {A,BOT}; // das Kelleralphabet
ANIMATION_FUNCTION_DEFAULT == {(1,1,z)}; ANIMATION_FUNCTION_DEFAULT == {(1,1,z)};
ANIMATION_FUNCTION == {2}*α \/ {3}*(γ); ANIMATION_FUNCTION == {2}*α {3}*(γ);
ANIMATION_FUNCTION1 == {(1,0,"z: "),(2,0,"α:"),(3,0,"γ:")}; ANIMATION_FUNCTION1 == {(1,0,"z: "),(2,0,"α:"),(3,0,"γ:")};
ANIMATION_STR_JUSTIFY_LEFTx == TRUE; ANIMATION_STR_JUSTIFY_LEFTx == TRUE;
SET_PREF_PRETTY_PRINT_SEQUENCES == TRUE SET_PREF_PRETTY_PRINT_SEQUENCES == TRUE
CONSTANTS δ CONSTANTS δ
PROPERTIES PROPERTIES
/* Der PDA für {a^m b^m| m>=1} ; Beispiel von Info 4 (Folie 95ff) */ /* Der PDA für {a^m b^m| m>=1} ; Beispiel von Info 4 (Folie 95ff) */
δ = { (z0,a,BOT) ↦ (z0,[A,BOT]), δ = { (z0,a,BOT) ↦ (z0,[A,BOT]),
(z0,a,A) ↦ (z0,[A,A]), (z0,a,A) ↦ (z0,[A,A]),
(z0,b,A) ↦ (z1,[]), (z0,b,A) ↦ (z1,[]),
(z1,lambda,BOT) ↦ (z1,[]), (z1,lambda,BOT) ↦ (z1,[]),
(z1,b,A) ↦ (z1,[]) } (z1,b,A) ↦ (z1,[]) }
// Anmerkung: δ ist hier als Relation anstatt als Funktion zu Mengen definiert // Anmerkung: δ ist hier als Relation anstatt als Funktion zu Mengen definiert
// Deshalb entspricht δ[{(z,a,g)}] in der B Maschine δ(z,a,g) aus dem Skript // Deshalb entspricht δ[{(z,a,g)}] in der B Maschine δ(z,a,g) aus dem Skript
VARIABLES VARIABLES
z, α, γ // Konfiguration in dem sich der PDA befindet z, α, γ // Konfiguration in dem sich der PDA befindet
INVARIANT INVARIANT
z ∈ Z ∧ // der aktuelle Zustand z ∈ Z ∧ // der aktuelle Zustand
α ∈ seq(Σ) ∧ // der noch zu lesende Teil des Eingabeworts α ∈ seq(Σ) ∧ // der noch zu lesende Teil des Eingabeworts
γ ∈ seq(Γ) // aktuelle Kellerinhalt γ ∈ seq(Γ) // aktuelle Kellerinhalt
INITIALISATION INITIALISATION
z := z0 || z := z0 ||
γ := [BOT] || // Initialisierung des Stapels γ := [BOT] || // Initialisierung des Stapels
α := [a,a,b,b] // das Eingabewort α := [a,a,b,b] // das Eingabewort
OPERATIONS OPERATIONS
// die Operationen Schritt und LambdaSchritt modellieren // die Operationen Schritt und LambdaSchritt modellieren
// Schritte in der Ableitungsrelation // Schritte in der Ableitungsrelation
Schritt(z‘,s) = PRE α ≠ ∅ ∧ γ ≠ ∅ ∧ Schritt(z‘,s) = PRE α ≠ ∅ ∧ γ ≠ ∅ ∧
z‘↦s ∈ δ[{(z,first(α),first(γ))}] THEN z‘↦s ∈ δ[{(z,first(α),first(γ))}] THEN
z := z‘ || // in den neuen Zustand wechseln z := z‘ || // in den neuen Zustand wechseln
α := tail(α) || // das erste Symbol auf der Eingabe löschen α := tail(α) || // das erste Symbol auf der Eingabe löschen
γ := s^tail(γ) // s auf den Stapel packen γ := s^tail(γ) // s auf den Stapel packen
END; END;
LambdaSchritt(z‘,s) = PRE γ ≠ ∅ ∧ LambdaSchritt(z‘,s) = PRE γ ≠ ∅ ∧
z‘↦s ∈ δ[{(z,lambda,first(γ))}] THEN z‘↦s ∈ δ[{(z,lambda,first(γ))}] THEN
z := z‘ || // in den neuen Zustand wechseln z := z‘ || // in den neuen Zustand wechseln
γ := s^tail(γ) // s auf den Stapel packen γ := s^tail(γ) // s auf den Stapel packen
END; END;
Akzeptieren = PRE γ = ∅ ∧ α = ∅ THEN Akzeptieren = PRE γ = ∅ ∧ α = ∅ THEN
/* Wir akzeptieren wenn Eingabe und Stapel leer sind */ /* Wir akzeptieren wenn Eingabe und Stapel leer sind */
skip END skip END
END END
``` ```
%% Output %% Output
Loaded machine: PDA Loaded machine: PDA
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:constants :constants
``` ```
%% Output %% Output
Machine constants set up using operation 0: $setup_constants() Machine constants set up using operation 0: $setup_constants()
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:init :init
``` ```
%% Output %% Output
Machine initialised using operation 1: $initialise_machine() Machine initialised using operation 1: $initialise_machine()
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:show :show
``` ```
%% Output %% Output
<table style="font-family:monospace"><tbody> <table style="font-family:monospace"><tbody>
<tr> <tr>
<td style="padding:10px">z: </td> <td style="padding:10px">z: </td>
<td style="padding:10px">z0</td> <td style="padding:10px">z0</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">α:</td> <td style="padding:10px">α:</td>
<td style="padding:10px">a</td> <td style="padding:10px">a</td>
<td style="padding:10px">a</td> <td style="padding:10px">a</td>
<td style="padding:10px">b</td> <td style="padding:10px">b</td>
<td style="padding:10px">b</td> <td style="padding:10px">b</td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">γ:</td> <td style="padding:10px">γ:</td>
<td style="padding:10px">BOT</td> <td style="padding:10px">BOT</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
</tbody></table> </tbody></table>
<Animation function visualisation> <Animation function visualisation>
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:browse :browse
``` ```
%% Output %% Output
Machine: PDA Machine: PDA
Sets: Z, SYMBOLE Sets: Z, SYMBOLE
Constants: δ Constants: δ
Variables: z, α, γ Variables: z, α, γ
Operations: Operations:
Schritt(z0,{(1|->A),(2|->BOT)}) Schritt(z0,{(1|->A),(2|->BOT)})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:exec Schritt :exec Schritt
``` ```
%% Output %% Output
Executed operation: Schritt(z0,{(1|->A),(2|->BOT)}) Executed operation: Schritt(z0,{(1|->A),(2|->BOT)})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:show :show
``` ```
%% Output %% Output
<table style="font-family:monospace"><tbody> <table style="font-family:monospace"><tbody>
<tr> <tr>
<td style="padding:10px">z: </td> <td style="padding:10px">z: </td>
<td style="padding:10px">z0</td> <td style="padding:10px">z0</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">α:</td> <td style="padding:10px">α:</td>
<td style="padding:10px">a</td> <td style="padding:10px">a</td>
<td style="padding:10px">b</td> <td style="padding:10px">b</td>
<td style="padding:10px">b</td> <td style="padding:10px">b</td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">γ:</td> <td style="padding:10px">γ:</td>
<td style="padding:10px">A</td> <td style="padding:10px">A</td>
<td style="padding:10px">BOT</td> <td style="padding:10px">BOT</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
</tbody></table> </tbody></table>
<Animation function visualisation> <Animation function visualisation>
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
(z,α,γ) (z,α,γ)
``` ```
%% Output %% Output
$(\mathit{z0}\mapsto\{(1\mapsto \mathit{a}),(2\mapsto \mathit{b}),(3\mapsto \mathit{b})\}\mapsto\{(1\mapsto \mathit{A}),(2\mapsto \mathit{BOT})\})$ $(\mathit{z0}\mapsto\{(1\mapsto \mathit{a}),(2\mapsto \mathit{b}),(3\mapsto \mathit{b})\}\mapsto\{(1\mapsto \mathit{A}),(2\mapsto \mathit{BOT})\})$
(z0↦{(1↦a),(2↦b),(3↦b)}↦{(1↦A),(2↦BOT)}) (z0↦{(1↦a),(2↦b),(3↦b)}↦{(1↦A),(2↦BOT)})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:browse :browse
``` ```
%% Output %% Output
Machine: PDA Machine: PDA
Sets: Z, SYMBOLE Sets: Z, SYMBOLE
Constants: δ Constants: δ
Variables: z, α, γ Variables: z, α, γ
Operations: Operations:
Schritt(z0,{(1|->A),(2|->A)}) Schritt(z0,{(1|->A),(2|->A)})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:exec Schritt :exec Schritt
``` ```
%% Output %% Output
Executed operation: Schritt(z0,{(1|->A),(2|->A)}) Executed operation: Schritt(z0,{(1|->A),(2|->A)})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:show :show
``` ```
%% Output %% Output
<table style="font-family:monospace"><tbody> <table style="font-family:monospace"><tbody>
<tr> <tr>
<td style="padding:10px">z: </td> <td style="padding:10px">z: </td>
<td style="padding:10px">z0</td> <td style="padding:10px">z0</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">α:</td> <td style="padding:10px">α:</td>
<td style="padding:10px">b</td> <td style="padding:10px">b</td>
<td style="padding:10px">b</td> <td style="padding:10px">b</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">γ:</td> <td style="padding:10px">γ:</td>
<td style="padding:10px">A</td> <td style="padding:10px">A</td>
<td style="padding:10px">A</td> <td style="padding:10px">A</td>
<td style="padding:10px">BOT</td> <td style="padding:10px">BOT</td>
</tr> </tr>
</tbody></table> </tbody></table>
<Animation function visualisation> <Animation function visualisation>
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:browse :browse
``` ```
%% Output %% Output
Machine: PDA Machine: PDA
Sets: Z, SYMBOLE Sets: Z, SYMBOLE
Constants: δ Constants: δ
Variables: z, α, γ Variables: z, α, γ
Operations: Operations:
Schritt(z1,{}) Schritt(z1,{})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:exec Schritt :exec Schritt
``` ```
%% Output %% Output
Executed operation: Schritt(z1,{}) Executed operation: Schritt(z1,{})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:show :show
``` ```
%% Output %% Output
<table style="font-family:monospace"><tbody> <table style="font-family:monospace"><tbody>
<tr> <tr>
<td style="padding:10px">z: </td> <td style="padding:10px">z: </td>
<td style="padding:10px">z1</td> <td style="padding:10px">z1</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">α:</td> <td style="padding:10px">α:</td>
<td style="padding:10px">b</td> <td style="padding:10px">b</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">γ:</td> <td style="padding:10px">γ:</td>
<td style="padding:10px">A</td> <td style="padding:10px">A</td>
<td style="padding:10px">BOT</td> <td style="padding:10px">BOT</td>
</tr> </tr>
</tbody></table> </tbody></table>
<Animation function visualisation> <Animation function visualisation>
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:browse :browse
``` ```
%% Output %% Output
Machine: PDA Machine: PDA
Sets: Z, SYMBOLE Sets: Z, SYMBOLE
Constants: δ Constants: δ
Variables: z, α, γ Variables: z, α, γ
Operations: Operations:
Schritt(z1,{}) Schritt(z1,{})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:exec Schritt :exec Schritt
``` ```
%% Output %% Output
Executed operation: Schritt(z1,{}) Executed operation: Schritt(z1,{})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:show :show
``` ```
%% Output %% Output
<table style="font-family:monospace"><tbody> <table style="font-family:monospace"><tbody>
<tr> <tr>
<td style="padding:10px">z: </td> <td style="padding:10px">z: </td>
<td style="padding:10px">z1</td> <td style="padding:10px">z1</td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">α:</td> <td style="padding:10px">α:</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">γ:</td> <td style="padding:10px">γ:</td>
<td style="padding:10px">BOT</td> <td style="padding:10px">BOT</td>
</tr> </tr>
</tbody></table> </tbody></table>
<Animation function visualisation> <Animation function visualisation>
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:browse :browse
``` ```
%% Output %% Output
Machine: PDA Machine: PDA
Sets: Z, SYMBOLE Sets: Z, SYMBOLE
Constants: δ Constants: δ
Variables: z, α, γ Variables: z, α, γ
Operations: Operations:
LambdaSchritt(z1,{}) LambdaSchritt(z1,{})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:exec LambdaSchritt :exec LambdaSchritt
``` ```
%% Output %% Output
Executed operation: LambdaSchritt(z1,{}) Executed operation: LambdaSchritt(z1,{})
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:show :show
``` ```
%% Output %% Output
<table style="font-family:monospace"><tbody> <table style="font-family:monospace"><tbody>
<tr> <tr>
<td style="padding:10px">z: </td> <td style="padding:10px">z: </td>
<td style="padding:10px">z1</td> <td style="padding:10px">z1</td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">α:</td> <td style="padding:10px">α:</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
<tr> <tr>
<td style="padding:10px">γ:</td> <td style="padding:10px">γ:</td>
<td style="padding:0px"></td> <td style="padding:0px"></td>
</tr> </tr>
</tbody></table> </tbody></table>
<Animation function visualisation> <Animation function visualisation>
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:browse :browse
``` ```
%% Output %% Output
Machine: PDA Machine: PDA
Sets: Z, SYMBOLE Sets: Z, SYMBOLE
Constants: δ Constants: δ
Variables: z, α, γ Variables: z, α, γ
Operations: Operations:
Akzeptieren() Akzeptieren()
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
:exec Akzeptieren :exec Akzeptieren
``` ```
%% Output %% Output
Executed operation: Akzeptieren() Executed operation: Akzeptieren()
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
Das Eingabewort ``aabb`` wurde akzeptiert. Das Eingabewort ``aabb`` wurde akzeptiert.
%% Cell type:markdown id: tags:
## PDA für eine kfG
Aus einer kontextfreien Grammatik kann man einen PDA konstruieren der die gleiche Sprache akzeptiert.
%% Cell type:code id: tags:
``` prob
::load
MACHINE PDA
/* B Modell eines PDA */
SETS
Z = {z0}; // die Zustände des Automaten, z0 ist der Startzustand
SYMBOLE={a,b, S, C, lambda} /* BOT = # = Bottom-Symbol im Keller*/
DEFINITIONS
Σ == {a,b}; // das Eingabe-Alphabet
BOT == S;
Γ == {S,C}; // das Kelleralphabet
ANIMATION_FUNCTION_DEFAULT == {(1,1,z)};
ANIMATION_FUNCTION == {2}*α ∪ {3}*(γ);
ANIMATION_FUNCTION1 == {(1,0,"z: "),(2,0,"α:"),(3,0,"γ:")};
ANIMATION_STR_JUSTIFY_LEFTx == TRUE;
SET_PREF_PRETTY_PRINT_SEQUENCES == TRUE
CONSTANTS P, δ
PROPERTIES
/* Die Grammatik Regeln */
P = { S ↦ [a,S,b], S ↦ [C],
C ↦ [a,b] } ∧
/* Berechnung von δ aus P */
δ = /* lässt sich eine Regel auf das Top-Symbol im Keller anwenden tue
dies ohne etwas zu lesen :*/
{ lhs,rhs | ∃(A,q).( A↦q ∈ P ∧ lhs=(z0,lambda,A) ∧ rhs=(z0,q))}
/* ist das Top-Symbol im Keller ein Terminalzeichen a welches
auf der Eingabe steht, so wird dies aus dem Keller gePOPt */
{ lhs,rhs | ∃a.(a∈Σ ∧ lhs = (z0,a,a) & rhs = (z0,[]))}
VARIABLES
z, α, γ // Konfiguration in dem sich der PDA befindet
INVARIANT
z ∈ Z ∧ // der aktuelle Zustand
α ∈ seq(Σ) ∧ // der noch zu lesende Teil des Eingabeworts
γ ∈ seq(Γ) // aktuelle Kellerinhalt
INITIALISATION
z := z0 ||
γ := [BOT] || // Initialisierung des Stapels
α := [a,a,b,b] // das Eingabewort
OPERATIONS
// die Operationen Schritt und LambdaSchritt modellieren
// Schritte in der Ableitungsrelation
Schritt(z‘,s) = PRE α ≠ ∅ ∧ γ ≠ ∅ ∧
z‘↦s ∈ δ[{(z,first(α),first(γ))}] THEN
z := z‘ || // in den neuen Zustand wechseln
α := tail(α) || // das erste Symbol auf der Eingabe löschen
γ := s^tail(γ) // s auf den Stapel packen
END;
LambdaSchritt(z‘,s) = PRE γ ≠ ∅ ∧
z‘↦s ∈ δ[{(z,lambda,first(γ))}] THEN
z := z‘ || // in den neuen Zustand wechseln
γ := s^tail(γ) // s auf den Stapel packen
END;
Akzeptieren = PRE γ = ∅ ∧ α = ∅ THEN
/* Wir akzeptieren wenn Eingabe und Stapel leer sind */
skip END
END
```
%% Output
Loaded machine: PDA
%% Cell type:code id: tags:
``` prob
:constants
```
%% Output
Machine constants set up using operation 0: $setup_constants()
%% Cell type:code id: tags:
``` prob
:init
```
%% Output
Machine initialised using operation 1: $initialise_machine()
%% Cell type:code id: tags:
``` prob
:table {z,x,X,z2,Xs| ((z,x,X)↦(z2,Xs)) : δ}
```
%% Output
|z|x|X|z2|Xs|
|---|---|---|---|---|
|$\renewcommand{\emptyset}{\mathord\varnothing}\renewcommand{\emptyset}{\mathord\varnothing}\renewcommand{\emptyset}{\mathord\varnothing}\renewcommand{\emptyset}{\mathord\varnothing}\renewcommand{\emptyset}{\mathord\varnothing}\mathit{z0}$|$\mathit{a}$|$\mathit{a}$|$\mathit{z0}$|$\emptyset$|
|$\mathit{z0}$|$\mathit{b}$|$\mathit{b}$|$\mathit{z0}$|$\emptyset$|
|$\mathit{z0}$|$\mathit{S}$|$\mathit{S}$|$\mathit{z0}$|$\emptyset$|
|$\mathit{z0}$|$\mathit{C}$|$\mathit{C}$|$\mathit{z0}$|$\emptyset$|
|$\mathit{z0}$|$\mathit{lambda}$|$\mathit{S}$|$\mathit{z0}$|$\{(1\mapsto \mathit{C})\}$|
|$\mathit{z0}$|$\mathit{lambda}$|$\mathit{S}$|$\mathit{z0}$|$\{(1\mapsto \mathit{a}),(2\mapsto \mathit{S}),(3\mapsto \mathit{b})\}$|
|$\mathit{z0}$|$\mathit{lambda}$|$\mathit{C}$|$\mathit{z0}$|$\{(1\mapsto \mathit{a}),(2\mapsto \mathit{b})\}$|
|$\mathit{z0}$|$\mathit{lambda}$|$\mathit{lambda}$|$\mathit{z0}$|$\emptyset$|
z x X z2 Xs
z0 a a z0 {}
z0 b b z0 {}
z0 S S z0 {}
z0 C C z0 {}
z0 lambda S z0 {(1|->C)}
z0 lambda S z0 {(1|->a),(2|->S),(3|->b)}
z0 lambda C z0 {(1|->a),(2|->b)}
z0 lambda lambda z0 {}
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:10px">a</td>
<td style="padding:10px">a</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:10px">S</td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:browse
```
%% Output
Machine: PDA
Sets: Z, SYMBOLE
Constants: P, δ
Variables: z, α, γ
Operations:
LambdaSchritt(z0,{(1|->C)})
LambdaSchritt(z0,{(1|->a),(2|->S),(3|->b)})
%% Cell type:code id: tags:
``` prob
:exec LambdaSchritt s = [a,S,b]
```
%% Output
Executed operation: LambdaSchritt(z0,{(1|->a),(2|->S),(3|->b)})
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:10px">a</td>
<td style="padding:10px">a</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:10px">a</td>
<td style="padding:10px">S</td>
<td style="padding:10px">b</td>
<td style="padding:0px"></td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:browse
```
%% Output
Machine: PDA
Sets: Z, SYMBOLE
Constants: P, δ
Variables: z, α, γ
Operations:
Schritt(z0,{})
%% Cell type:code id: tags:
``` prob
:exec Schritt
```
%% Output
Executed operation: Schritt(z0,{})
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:10px">a</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:10px">S</td>
<td style="padding:10px">b</td>
<td style="padding:0px"></td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:browse
```
%% Output
Machine: PDA
Sets: Z, SYMBOLE
Constants: P, δ
Variables: z, α, γ
Operations:
LambdaSchritt(z0,{(1|->C)})
LambdaSchritt(z0,{(1|->a),(2|->S),(3|->b)})
%% Cell type:code id: tags:
``` prob
:exec LambdaSchritt s = [C]
```
%% Output
Executed operation: LambdaSchritt(z0,{(1|->C)})
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:10px">a</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:10px">C</td>
<td style="padding:10px">b</td>
<td style="padding:0px"></td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:browse
```
%% Output
Machine: PDA
Sets: Z, SYMBOLE
Constants: P, δ
Variables: z, α, γ
Operations:
LambdaSchritt(z0,{(1|->a),(2|->b)})
%% Cell type:code id: tags:
``` prob
:exec LambdaSchritt s=[a,b]
```
%% Output
Executed operation: LambdaSchritt(z0,{(1|->a),(2|->b)})
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
<td style="padding:0px"></td>
<td style="padding:0px"></td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:10px">a</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:10px">a</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:browse
```
%% Output
Machine: PDA
Sets: Z, SYMBOLE
Constants: P, δ
Variables: z, α, γ
Operations:
Schritt(z0,{})
%% Cell type:code id: tags:
``` prob
:exec Schritt
```
%% Output
Executed operation: Schritt(z0,{})
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
<td style="padding:0px"></td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:10px">b</td>
<td style="padding:10px">b</td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:exec Schritt
```
%% Output
Executed operation: Schritt(z0,{})
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:10px">b</td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:10px">b</td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:exec Schritt
```
%% Output
Executed operation: Schritt(z0,{})
%% Cell type:code id: tags:
``` prob
:show
```
%% Output
<table style="font-family:monospace"><tbody>
<tr>
<td style="padding:10px">z: </td>
<td style="padding:10px">z0</td>
</tr>
<tr>
<td style="padding:10px">α:</td>
<td style="padding:0px"></td>
</tr>
<tr>
<td style="padding:10px">γ:</td>
<td style="padding:0px"></td>
</tr>
</tbody></table>
<Animation function visualisation>
%% Cell type:code id: tags:
``` prob
:exec Akzeptieren
```
%% Output
Executed operation: Akzeptieren()
%% Cell type:markdown id: tags:
Das Wort ``aabb`` wird sowohl von der Grammatik generiert als auch von diesem generierten PDA akzeptiert.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` prob ``` prob
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment