Select Git revision
MANIFEST.MF
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
DO.example.paper 2.17 KiB
#!/bin/bash
# Parameters ------------------------------------------------------
# --- Sim-M dataset
#TASK="sim-m"
#DATA_DIR="data/simulated-dialogue/sim-M"
#DATASET_CONFIG="dataset_config/sim-m.json"
# --- Sim-R dataset
#TASK="sim-r"
#DATA_DIR="data/simulated-dialogue/sim-R"
#DATASET_CONFIG="dataset_config/sim-r.json"
# --- WOZ 2.0 dataset
#TASK="woz2"
#DATA_DIR="data/woz2"
#DATASET_CONFIG="dataset_config/woz2.json"
# --- MultiWOZ 2.1 legacy version dataset
#TASK="multiwoz21_legacy"
#DATA_DIR="data/MULTIWOZ2.1"
#DATASET_CONFIG="dataset_config/multiwoz21.json"
# --- MultiWOZ 2.1 dataset
TASK="multiwoz21"
DATA_DIR="data/multiwoz/data/MultiWOZ_2.1"
DATASET_CONFIG="dataset_config/multiwoz21.json"
# --- MultiWOZ 2.1 in ConvLab3's unified data format
#TASK="unified"
#DATA_DIR=""
#DATASET_CONFIG="dataset_config/unified_multiwoz21.json"
# Project paths etc. ----------------------------------------------
OUT_DIR=results
mkdir -p ${OUT_DIR}
# Main ------------------------------------------------------------
for step in train dev test; do
args_add=""
if [ "$step" = "train" ]; then
args_add="--do_train --predict_type=dummy" # INFO: For sim-M, we recommend to add "--svd=0.3"
elif [ "$step" = "dev" ] || [ "$step" = "test" ]; then
args_add="--do_eval --predict_type=${step}"
fi
python3 run_dst.py \
--task_name=${TASK} \
--data_dir=${DATA_DIR} \
--dataset_config=${DATASET_CONFIG} \
--model_type="bert" \
--model_name_or_path="bert-base-uncased" \
--do_lower_case \
--learning_rate=1e-4 \
--num_train_epochs=10 \
--max_seq_length=180 \
--per_gpu_train_batch_size=48 \
--per_gpu_eval_batch_size=1 \
--output_dir=${OUT_DIR} \
--save_epochs=2 \
--warmup_proportion=0.1 \
--eval_all_checkpoints \
--adam_epsilon=1e-6 \
--delexicalize_sys_utts \
--class_aux_feats_inform \
--class_aux_feats_ds \
${args_add} \
2>&1 | tee ${OUT_DIR}/${step}.log
if [ "$step" = "dev" ] || [ "$step" = "test" ]; then
python3 metric_dst.py \
--dataset_config=${DATASET_CONFIG} \
--file_list="${OUT_DIR}/pred_res.${step}*json" \
2>&1 | tee ${OUT_DIR}/eval_pred_${step}.log
fi
done