Select Git revision
extension.ts
-
SeeBasTStick authoredSeeBasTStick authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
model.py 12.83 KiB
import os
import sys
from typing import List, Tuple
import numpy as np
import tensorflow as tf
from dataloader_iam import Batch
# Disable eager mode
tf.compat.v1.disable_eager_execution()
class DecoderType:
"""CTC decoder types."""
BestPath = 0
BeamSearch = 1
WordBeamSearch = 2
class Model:
"""Minimalistic TF model for HTR."""
def __init__(self,
char_list: List[str],
decoder_type: str = DecoderType.BestPath,
must_restore: bool = False,
dump: bool = False) -> None:
"""Init model: add CNN, RNN and CTC and initialize TF."""
self.dump = dump
self.char_list = char_list
self.decoder_type = decoder_type
self.must_restore = must_restore
self.snap_ID = 0
# Whether to use normalization over a batch or a population
self.is_train = tf.compat.v1.placeholder(tf.bool, name='is_train')
# input image batch
self.input_imgs = tf.compat.v1.placeholder(tf.float32, shape=(None, None, None))
# setup CNN, RNN and CTC
self.setup_cnn()
self.setup_rnn()
self.setup_ctc()
# setup optimizer to train NN
self.batches_trained = 0
self.update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(self.update_ops):
self.optimizer = tf.compat.v1.train.AdamOptimizer().minimize(self.loss)
# initialize TF
self.sess, self.saver = self.setup_tf()
def setup_cnn(self) -> None:
"""Create CNN layers."""
cnn_in4d = tf.expand_dims(input=self.input_imgs, axis=3)
# list of parameters for the layers
kernel_vals = [5, 5, 3, 3, 3]
feature_vals = [1, 32, 64, 128, 128, 256]
stride_vals = pool_vals = [(2, 2), (2, 2), (1, 2), (1, 2), (1, 2)]
num_layers = len(stride_vals)
# create layers
pool = cnn_in4d # input to first CNN layer
for i in range(num_layers):
kernel = tf.Variable(
tf.random.truncated_normal([kernel_vals[i], kernel_vals[i], feature_vals[i], feature_vals[i + 1]],
stddev=0.1))
conv = tf.nn.conv2d(input=pool, filters=kernel, padding='SAME', strides=(1, 1, 1, 1))
conv_norm = tf.compat.v1.layers.batch_normalization(conv, training=self.is_train)
relu = tf.nn.relu(conv_norm)
pool = tf.nn.max_pool2d(input=relu, ksize=(1, pool_vals[i][0], pool_vals[i][1], 1),
strides=(1, stride_vals[i][0], stride_vals[i][1], 1), padding='VALID')
self.cnn_out_4d = pool
def setup_rnn(self) -> None:
"""Create RNN layers."""
rnn_in3d = tf.squeeze(self.cnn_out_4d, axis=[2])
# basic cells which is used to build RNN
num_hidden = 256
cells = [tf.compat.v1.nn.rnn_cell.LSTMCell(num_units=num_hidden, state_is_tuple=True) for _ in
range(2)] # 2 layers
# stack basic cells
stacked = tf.compat.v1.nn.rnn_cell.MultiRNNCell(cells, state_is_tuple=True)
# bidirectional RNN
# BxTxF -> BxTx2H
(fw, bw), _ = tf.compat.v1.nn.bidirectional_dynamic_rnn(cell_fw=stacked, cell_bw=stacked, inputs=rnn_in3d,
dtype=rnn_in3d.dtype)
# BxTxH + BxTxH -> BxTx2H -> BxTx1X2H
concat = tf.expand_dims(tf.concat([fw, bw], 2), 2)
# project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC
kernel = tf.Variable(tf.random.truncated_normal([1, 1, num_hidden * 2, len(self.char_list) + 1], stddev=0.1))
self.rnn_out_3d = tf.squeeze(tf.nn.atrous_conv2d(value=concat, filters=kernel, rate=1, padding='SAME'),
axis=[2])
def setup_ctc(self) -> None:
"""Create CTC loss and decoder."""
# BxTxC -> TxBxC
self.ctc_in_3d_tbc = tf.transpose(a=self.rnn_out_3d, perm=[1, 0, 2])
# ground truth text as sparse tensor
self.gt_texts = tf.SparseTensor(tf.compat.v1.placeholder(tf.int64, shape=[None, 2]),
tf.compat.v1.placeholder(tf.int32, [None]),
tf.compat.v1.placeholder(tf.int64, [2]))
# calc loss for batch
self.seq_len = tf.compat.v1.placeholder(tf.int32, [None])
self.loss = tf.reduce_mean(
input_tensor=tf.compat.v1.nn.ctc_loss(labels=self.gt_texts, inputs=self.ctc_in_3d_tbc,
sequence_length=self.seq_len,
ctc_merge_repeated=True))
# calc loss for each element to compute label probability
self.saved_ctc_input = tf.compat.v1.placeholder(tf.float32,
shape=[None, None, len(self.char_list) + 1])
self.loss_per_element = tf.compat.v1.nn.ctc_loss(labels=self.gt_texts, inputs=self.saved_ctc_input,
sequence_length=self.seq_len, ctc_merge_repeated=True)
# best path decoding or beam search decoding
if self.decoder_type == DecoderType.BestPath:
self.decoder = tf.nn.ctc_greedy_decoder(inputs=self.ctc_in_3d_tbc, sequence_length=self.seq_len)
elif self.decoder_type == DecoderType.BeamSearch:
self.decoder = tf.nn.ctc_beam_search_decoder(inputs=self.ctc_in_3d_tbc, sequence_length=self.seq_len,
beam_width=50)
# word beam search decoding (see https://github.com/githubharald/CTCWordBeamSearch)
elif self.decoder_type == DecoderType.WordBeamSearch:
# prepare information about language (dictionary, characters in dataset, characters forming words)
chars = ''.join(self.char_list)
word_chars = open('../model/wordCharList.txt').read().splitlines()[0]
corpus = open('../data/corpus.txt').read()
# decode using the "Words" mode of word beam search
from word_beam_search import WordBeamSearch
self.decoder = WordBeamSearch(50, 'Words', 0.0, corpus.encode('utf8'), chars.encode('utf8'),
word_chars.encode('utf8'))
# the input to the decoder must have softmax already applied
self.wbs_input = tf.nn.softmax(self.ctc_in_3d_tbc, axis=2)
def setup_tf(self) -> Tuple[tf.compat.v1.Session, tf.compat.v1.train.Saver]:
"""Initialize TF."""
print('Python: ' + sys.version)
print('Tensorflow: ' + tf.__version__)
sess = tf.compat.v1.Session() # TF session
saver = tf.compat.v1.train.Saver(max_to_keep=1) # saver saves model to file
model_dir = '../model/'
latest_snapshot = tf.train.latest_checkpoint(model_dir) # is there a saved model?
# if model must be restored (for inference), there must be a snapshot
if self.must_restore and not latest_snapshot:
raise Exception('No saved model found in: ' + model_dir)
# load saved model if available
if latest_snapshot:
print('Init with stored values from ' + latest_snapshot)
saver.restore(sess, latest_snapshot)
else:
print('Init with new values')
sess.run(tf.compat.v1.global_variables_initializer())
return sess, saver
def to_sparse(self, texts: List[str]) -> Tuple[List[List[int]], List[int], List[int]]:
"""Put ground truth texts into sparse tensor for ctc_loss."""
indices = []
values = []
shape = [len(texts), 0] # last entry must be max(labelList[i])
# go over all texts
for batchElement, text in enumerate(texts):
# convert to string of label (i.e. class-ids)
label_str = [self.char_list.index(c) for c in text]
# sparse tensor must have size of max. label-string
if len(label_str) > shape[1]:
shape[1] = len(label_str)
# put each label into sparse tensor
for i, label in enumerate(label_str):
indices.append([batchElement, i])
values.append(label)
return indices, values, shape
def decoder_output_to_text(self, ctc_output: tuple, batch_size: int) -> List[str]:
"""Extract texts from output of CTC decoder."""
# word beam search: already contains label strings
if self.decoder_type == DecoderType.WordBeamSearch:
label_strs = ctc_output
# TF decoders: label strings are contained in sparse tensor
else:
# ctc returns tuple, first element is SparseTensor
decoded = ctc_output[0][0]
# contains string of labels for each batch element
label_strs = [[] for _ in range(batch_size)]
# go over all indices and save mapping: batch -> values
for (idx, idx2d) in enumerate(decoded.indices):
label = decoded.values[idx]
batch_element = idx2d[0] # index according to [b,t]
label_strs[batch_element].append(label)
# map labels to chars for all batch elements
return [''.join([self.char_list[c] for c in labelStr]) for labelStr in label_strs]
def train_batch(self, batch: Batch) -> float:
"""Feed a batch into the NN to train it."""
num_batch_elements = len(batch.imgs)
max_text_len = batch.imgs[0].shape[0] // 4
sparse = self.to_sparse(batch.gt_texts)
eval_list = [self.optimizer, self.loss]
feed_dict = {self.input_imgs: batch.imgs, self.gt_texts: sparse,
self.seq_len: [max_text_len] * num_batch_elements, self.is_train: True}
_, loss_val = self.sess.run(eval_list, feed_dict)
self.batches_trained += 1
return loss_val
@staticmethod
def dump_nn_output(rnn_output: np.ndarray) -> None:
"""Dump the output of the NN to CSV file(s)."""
dump_dir = '../dump/'
if not os.path.isdir(dump_dir):
os.mkdir(dump_dir)
# iterate over all batch elements and create a CSV file for each one
max_t, max_b, max_c = rnn_output.shape
for b in range(max_b):
csv = ''
for t in range(max_t):
for c in range(max_c):
csv += str(rnn_output[t, b, c]) + ';'
csv += '\n'
fn = dump_dir + 'rnnOutput_' + str(b) + '.csv'
print('Write dump of NN to file: ' + fn)
with open(fn, 'w') as f:
f.write(csv)
def infer_batch(self, batch: Batch, calc_probability: bool = False, probability_of_gt: bool = False):
"""Feed a batch into the NN to recognize the texts."""
# decode, optionally save RNN output
num_batch_elements = len(batch.imgs)
# put tensors to be evaluated into list
eval_list = []
if self.decoder_type == DecoderType.WordBeamSearch:
eval_list.append(self.wbs_input)
else:
eval_list.append(self.decoder)
if self.dump or calc_probability:
eval_list.append(self.ctc_in_3d_tbc)
# sequence length depends on input image size (model downsizes width by 4)
max_text_len = batch.imgs[0].shape[0] // 4
# dict containing all tensor fed into the model
feed_dict = {self.input_imgs: batch.imgs, self.seq_len: [max_text_len] * num_batch_elements,
self.is_train: False}
# evaluate model
eval_res = self.sess.run(eval_list, feed_dict)
# TF decoders: decoding already done in TF graph
if self.decoder_type != DecoderType.WordBeamSearch:
decoded = eval_res[0]
# word beam search decoder: decoding is done in C++ function compute()
else:
decoded = self.decoder.compute(eval_res[0])
# map labels (numbers) to character string
texts = self.decoder_output_to_text(decoded, num_batch_elements)
# feed RNN output and recognized text into CTC loss to compute labeling probability
probs = None
if calc_probability:
sparse = self.to_sparse(batch.gt_texts) if probability_of_gt else self.to_sparse(texts)
ctc_input = eval_res[1]
eval_list = self.loss_per_element
feed_dict = {self.saved_ctc_input: ctc_input, self.gt_texts: sparse,
self.seq_len: [max_text_len] * num_batch_elements, self.is_train: False}
loss_vals = self.sess.run(eval_list, feed_dict)
probs = np.exp(-loss_vals)
# dump the output of the NN to CSV file(s)
if self.dump:
self.dump_nn_output(eval_res[1])
return texts, probs
def save(self) -> None:
"""Save model to file."""
self.snap_ID += 1
self.saver.save(self.sess, '../model/snapshot', global_step=self.snap_ID)