Skip to content
Snippets Groups Projects
Select Git revision
  • 0f35b04d9ac93fd0ce4afb49e8a2ae18e3f262eb
  • develop default
  • release protected
  • v0.x
  • v2.2.0
  • v2.1.0
6 results

extension.ts

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    model.py 12.83 KiB
    import os
    import sys
    from typing import List, Tuple
    
    import numpy as np
    import tensorflow as tf
    
    from dataloader_iam import Batch
    
    # Disable eager mode
    tf.compat.v1.disable_eager_execution()
    
    
    class DecoderType:
        """CTC decoder types."""
        BestPath = 0
        BeamSearch = 1
        WordBeamSearch = 2
    
    
    class Model:
        """Minimalistic TF model for HTR."""
    
        def __init__(self,
                     char_list: List[str],
                     decoder_type: str = DecoderType.BestPath,
                     must_restore: bool = False,
                     dump: bool = False) -> None:
            """Init model: add CNN, RNN and CTC and initialize TF."""
            self.dump = dump
            self.char_list = char_list
            self.decoder_type = decoder_type
            self.must_restore = must_restore
            self.snap_ID = 0
    
            # Whether to use normalization over a batch or a population
            self.is_train = tf.compat.v1.placeholder(tf.bool, name='is_train')
    
            # input image batch
            self.input_imgs = tf.compat.v1.placeholder(tf.float32, shape=(None, None, None))
    
            # setup CNN, RNN and CTC
            self.setup_cnn()
            self.setup_rnn()
            self.setup_ctc()
    
            # setup optimizer to train NN
            self.batches_trained = 0
            self.update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(self.update_ops):
                self.optimizer = tf.compat.v1.train.AdamOptimizer().minimize(self.loss)
    
            # initialize TF
            self.sess, self.saver = self.setup_tf()
    
        def setup_cnn(self) -> None:
            """Create CNN layers."""
            cnn_in4d = tf.expand_dims(input=self.input_imgs, axis=3)
    
            # list of parameters for the layers
            kernel_vals = [5, 5, 3, 3, 3]
            feature_vals = [1, 32, 64, 128, 128, 256]
            stride_vals = pool_vals = [(2, 2), (2, 2), (1, 2), (1, 2), (1, 2)]
            num_layers = len(stride_vals)
    
            # create layers
            pool = cnn_in4d  # input to first CNN layer
            for i in range(num_layers):
                kernel = tf.Variable(
                    tf.random.truncated_normal([kernel_vals[i], kernel_vals[i], feature_vals[i], feature_vals[i + 1]],
                                               stddev=0.1))
                conv = tf.nn.conv2d(input=pool, filters=kernel, padding='SAME', strides=(1, 1, 1, 1))
                conv_norm = tf.compat.v1.layers.batch_normalization(conv, training=self.is_train)
                relu = tf.nn.relu(conv_norm)
                pool = tf.nn.max_pool2d(input=relu, ksize=(1, pool_vals[i][0], pool_vals[i][1], 1),
                                        strides=(1, stride_vals[i][0], stride_vals[i][1], 1), padding='VALID')
    
            self.cnn_out_4d = pool
    
        def setup_rnn(self) -> None:
            """Create RNN layers."""
            rnn_in3d = tf.squeeze(self.cnn_out_4d, axis=[2])
    
            # basic cells which is used to build RNN
            num_hidden = 256
            cells = [tf.compat.v1.nn.rnn_cell.LSTMCell(num_units=num_hidden, state_is_tuple=True) for _ in
                     range(2)]  # 2 layers
    
            # stack basic cells
            stacked = tf.compat.v1.nn.rnn_cell.MultiRNNCell(cells, state_is_tuple=True)
    
            # bidirectional RNN
            # BxTxF -> BxTx2H
            (fw, bw), _ = tf.compat.v1.nn.bidirectional_dynamic_rnn(cell_fw=stacked, cell_bw=stacked, inputs=rnn_in3d,
                                                                    dtype=rnn_in3d.dtype)
    
            # BxTxH + BxTxH -> BxTx2H -> BxTx1X2H
            concat = tf.expand_dims(tf.concat([fw, bw], 2), 2)
    
            # project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC
            kernel = tf.Variable(tf.random.truncated_normal([1, 1, num_hidden * 2, len(self.char_list) + 1], stddev=0.1))
            self.rnn_out_3d = tf.squeeze(tf.nn.atrous_conv2d(value=concat, filters=kernel, rate=1, padding='SAME'),
                                         axis=[2])
    
        def setup_ctc(self) -> None:
            """Create CTC loss and decoder."""
            # BxTxC -> TxBxC
            self.ctc_in_3d_tbc = tf.transpose(a=self.rnn_out_3d, perm=[1, 0, 2])
            # ground truth text as sparse tensor
            self.gt_texts = tf.SparseTensor(tf.compat.v1.placeholder(tf.int64, shape=[None, 2]),
                                            tf.compat.v1.placeholder(tf.int32, [None]),
                                            tf.compat.v1.placeholder(tf.int64, [2]))
    
            # calc loss for batch
            self.seq_len = tf.compat.v1.placeholder(tf.int32, [None])
            self.loss = tf.reduce_mean(
                input_tensor=tf.compat.v1.nn.ctc_loss(labels=self.gt_texts, inputs=self.ctc_in_3d_tbc,
                                                      sequence_length=self.seq_len,
                                                      ctc_merge_repeated=True))
    
            # calc loss for each element to compute label probability
            self.saved_ctc_input = tf.compat.v1.placeholder(tf.float32,
                                                            shape=[None, None, len(self.char_list) + 1])
            self.loss_per_element = tf.compat.v1.nn.ctc_loss(labels=self.gt_texts, inputs=self.saved_ctc_input,
                                                             sequence_length=self.seq_len, ctc_merge_repeated=True)
    
            # best path decoding or beam search decoding
            if self.decoder_type == DecoderType.BestPath:
                self.decoder = tf.nn.ctc_greedy_decoder(inputs=self.ctc_in_3d_tbc, sequence_length=self.seq_len)
            elif self.decoder_type == DecoderType.BeamSearch:
                self.decoder = tf.nn.ctc_beam_search_decoder(inputs=self.ctc_in_3d_tbc, sequence_length=self.seq_len,
                                                             beam_width=50)
            # word beam search decoding (see https://github.com/githubharald/CTCWordBeamSearch)
            elif self.decoder_type == DecoderType.WordBeamSearch:
                # prepare information about language (dictionary, characters in dataset, characters forming words)
                chars = ''.join(self.char_list)
                word_chars = open('../model/wordCharList.txt').read().splitlines()[0]
                corpus = open('../data/corpus.txt').read()
    
                # decode using the "Words" mode of word beam search
                from word_beam_search import WordBeamSearch
                self.decoder = WordBeamSearch(50, 'Words', 0.0, corpus.encode('utf8'), chars.encode('utf8'),
                                              word_chars.encode('utf8'))
    
                # the input to the decoder must have softmax already applied
                self.wbs_input = tf.nn.softmax(self.ctc_in_3d_tbc, axis=2)
    
        def setup_tf(self) -> Tuple[tf.compat.v1.Session, tf.compat.v1.train.Saver]:
            """Initialize TF."""
            print('Python: ' + sys.version)
            print('Tensorflow: ' + tf.__version__)
    
            sess = tf.compat.v1.Session()  # TF session
    
            saver = tf.compat.v1.train.Saver(max_to_keep=1)  # saver saves model to file
            model_dir = '../model/'
            latest_snapshot = tf.train.latest_checkpoint(model_dir)  # is there a saved model?
    
            # if model must be restored (for inference), there must be a snapshot
            if self.must_restore and not latest_snapshot:
                raise Exception('No saved model found in: ' + model_dir)
    
            # load saved model if available
            if latest_snapshot:
                print('Init with stored values from ' + latest_snapshot)
                saver.restore(sess, latest_snapshot)
            else:
                print('Init with new values')
                sess.run(tf.compat.v1.global_variables_initializer())
    
            return sess, saver
    
        def to_sparse(self, texts: List[str]) -> Tuple[List[List[int]], List[int], List[int]]:
            """Put ground truth texts into sparse tensor for ctc_loss."""
            indices = []
            values = []
            shape = [len(texts), 0]  # last entry must be max(labelList[i])
    
            # go over all texts
            for batchElement, text in enumerate(texts):
                # convert to string of label (i.e. class-ids)
                label_str = [self.char_list.index(c) for c in text]
                # sparse tensor must have size of max. label-string
                if len(label_str) > shape[1]:
                    shape[1] = len(label_str)
                # put each label into sparse tensor
                for i, label in enumerate(label_str):
                    indices.append([batchElement, i])
                    values.append(label)
    
            return indices, values, shape
    
        def decoder_output_to_text(self, ctc_output: tuple, batch_size: int) -> List[str]:
            """Extract texts from output of CTC decoder."""
    
            # word beam search: already contains label strings
            if self.decoder_type == DecoderType.WordBeamSearch:
                label_strs = ctc_output
    
            # TF decoders: label strings are contained in sparse tensor
            else:
                # ctc returns tuple, first element is SparseTensor
                decoded = ctc_output[0][0]
    
                # contains string of labels for each batch element
                label_strs = [[] for _ in range(batch_size)]
    
                # go over all indices and save mapping: batch -> values
                for (idx, idx2d) in enumerate(decoded.indices):
                    label = decoded.values[idx]
                    batch_element = idx2d[0]  # index according to [b,t]
                    label_strs[batch_element].append(label)
    
            # map labels to chars for all batch elements
            return [''.join([self.char_list[c] for c in labelStr]) for labelStr in label_strs]
    
        def train_batch(self, batch: Batch) -> float:
            """Feed a batch into the NN to train it."""
            num_batch_elements = len(batch.imgs)
            max_text_len = batch.imgs[0].shape[0] // 4
            sparse = self.to_sparse(batch.gt_texts)
            eval_list = [self.optimizer, self.loss]
            feed_dict = {self.input_imgs: batch.imgs, self.gt_texts: sparse,
                         self.seq_len: [max_text_len] * num_batch_elements, self.is_train: True}
            _, loss_val = self.sess.run(eval_list, feed_dict)
            self.batches_trained += 1
            return loss_val
    
        @staticmethod
        def dump_nn_output(rnn_output: np.ndarray) -> None:
            """Dump the output of the NN to CSV file(s)."""
            dump_dir = '../dump/'
            if not os.path.isdir(dump_dir):
                os.mkdir(dump_dir)
    
            # iterate over all batch elements and create a CSV file for each one
            max_t, max_b, max_c = rnn_output.shape
            for b in range(max_b):
                csv = ''
                for t in range(max_t):
                    for c in range(max_c):
                        csv += str(rnn_output[t, b, c]) + ';'
                    csv += '\n'
                fn = dump_dir + 'rnnOutput_' + str(b) + '.csv'
                print('Write dump of NN to file: ' + fn)
                with open(fn, 'w') as f:
                    f.write(csv)
    
        def infer_batch(self, batch: Batch, calc_probability: bool = False, probability_of_gt: bool = False):
            """Feed a batch into the NN to recognize the texts."""
    
            # decode, optionally save RNN output
            num_batch_elements = len(batch.imgs)
    
            # put tensors to be evaluated into list
            eval_list = []
    
            if self.decoder_type == DecoderType.WordBeamSearch:
                eval_list.append(self.wbs_input)
            else:
                eval_list.append(self.decoder)
    
            if self.dump or calc_probability:
                eval_list.append(self.ctc_in_3d_tbc)
    
            # sequence length depends on input image size (model downsizes width by 4)
            max_text_len = batch.imgs[0].shape[0] // 4
    
            # dict containing all tensor fed into the model
            feed_dict = {self.input_imgs: batch.imgs, self.seq_len: [max_text_len] * num_batch_elements,
                         self.is_train: False}
    
            # evaluate model
            eval_res = self.sess.run(eval_list, feed_dict)
    
            # TF decoders: decoding already done in TF graph
            if self.decoder_type != DecoderType.WordBeamSearch:
                decoded = eval_res[0]
            # word beam search decoder: decoding is done in C++ function compute()
            else:
                decoded = self.decoder.compute(eval_res[0])
    
            # map labels (numbers) to character string
            texts = self.decoder_output_to_text(decoded, num_batch_elements)
    
            # feed RNN output and recognized text into CTC loss to compute labeling probability
            probs = None
            if calc_probability:
                sparse = self.to_sparse(batch.gt_texts) if probability_of_gt else self.to_sparse(texts)
                ctc_input = eval_res[1]
                eval_list = self.loss_per_element
                feed_dict = {self.saved_ctc_input: ctc_input, self.gt_texts: sparse,
                             self.seq_len: [max_text_len] * num_batch_elements, self.is_train: False}
                loss_vals = self.sess.run(eval_list, feed_dict)
                probs = np.exp(-loss_vals)
    
            # dump the output of the NN to CSV file(s)
            if self.dump:
                self.dump_nn_output(eval_res[1])
    
            return texts, probs
    
        def save(self) -> None:
            """Save model to file."""
            self.snap_ID += 1
            self.saver.save(self.sess, '../model/snapshot', global_step=self.snap_ID)