`human_val` option will make the model evaluate on the validation set translated by human.
Note: You may want to download pre-traiend BERT models and translation-train SUMBT models provided by us.
Note: You may want to download pre-traiend BERT models and translation-train SUMBT models provided by us.
...
@@ -211,14 +210,14 @@ Without modifying any code, you could:
...
@@ -211,14 +210,14 @@ Without modifying any code, you could:
- download pre-trained BERT models from:
- download pre-trained BERT models from:
-[bert-base-uncased](https://huggingface.co/bert-base-uncased) for CorssWOZ-en
-[bert-base-uncased](https://huggingface.co/bert-base-uncased) for CrossWOZ-en
-[chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) for MultiWOZ-zh
-[chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) for MultiWOZ-zh
extract it to `./pre-trained-models`.
extract it to `./pre-trained-models`.
- for translation-train SUMBT model:
- for translation-train SUMBT model:
-[trained on CorssWOZ-en](https://convlab.blob.core.windows.net/convlab-2/crosswoz_en-pytorch_model.bin.zip)
-[trained on CrossWOZ-en](https://convlab.blob.core.windows.net/convlab-2/crosswoz_en-pytorch_model.bin.zip)
-[trained on MultiWOZ-zh](https://convlab.blob.core.windows.net/convlab-2/multiwoz_zh-pytorch_model.bin.zip)
-[trained on MultiWOZ-zh](https://convlab.blob.core.windows.net/convlab-2/multiwoz_zh-pytorch_model.bin.zip)
- Say the data set is CrossWOZ (English), (after extraction) just save the pre-trained model under `./convlab2/dst/sumbt/crosswoz_en/pre-trained` and name it with `pytorch_model.bin`.
- Say the data set is CrossWOZ (English), (after extraction) just save the pre-trained model under `./convlab2/dst/sumbt/crosswoz_en/pre-trained` and name it with `pytorch_model.bin`.