-
罗崚骁(Lingxiao Luo) authored
* remove transformer cache dir * process data * fix "book" slots processing in MultiWOZ-zh SUMBT, update evaluation results #185 * Revert "process data" This reverts commit d17602c23cccb482827d8892554f32eb69dde297. * Revert "remove transformer cache dir" This reverts commit 35873129eb8d45a5bebada63b4549de88b665873.
罗崚骁(Lingxiao Luo) authored* remove transformer cache dir * process data * fix "book" slots processing in MultiWOZ-zh SUMBT, update evaluation results #185 * Revert "process data" This reverts commit d17602c23cccb482827d8892554f32eb69dde297. * Revert "remove transformer cache dir" This reverts commit 35873129eb8d45a5bebada63b4549de88b665873.
ConvLab-2
ConvLab-2 is an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab, ConvLab-2 inherits ConvLab's framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. paper(https://arxiv.org/abs/2002.04793)
- Installation
- Tutorials
- Documents
- Models
- Supported Datasets
- End-to-end Performance on MultiWOZ
- Module Performance on MultiWOZ
- Issues
- Contributions
- Citing
- License
Installation
Require python 3.6.
Clone this repository:
git clone https://github.com/thu-coai/ConvLab-2.git
Install ConvLab-2 via pip:
cd ConvLab-2
pip install -e .
Tutorials
- Getting Started (Have a try on Colab!)
- Add New Model
- Train RL Policies
- Interactive Tool demo video(https://youtu.be/00VWzbcx26E)
Documents
Our documents are on https://thu-coai.github.io/ConvLab-2_docs/convlab2.html.
Models
We provide following models:
- NLU: SVMNLU, MILU, BERTNLU
- DST: rule, TRADE, SUMBT
- Policy: rule, Imitation, REINFORCE, PPO, GDPL, MDRG, HDSA, LaRL
- Simulator policy: Agenda, VHUS
- NLG: Template, SCLSTM
- End2End: Sequicity, DAMD, RNN_rollout
For more details about these models, You can refer to README.md
under convlab2/$module/$model/$dataset
dir such as convlab2/nlu/jointBERT/multiwoz/README.md
.
Supported Datasets
-
Multiwoz 2.1
- We add user dialogue act (inform, request, bye, greet, thank), remove 5 sessions that have incomplete dialogue act annotation and place it under
data/multiwoz
dir. - Train/val/test size: 8434/999/1000. Split as original data.
- LICENSE: Attribution 4.0 International, url: http://creativecommons.org/licenses/by/4.0/
- We add user dialogue act (inform, request, bye, greet, thank), remove 5 sessions that have incomplete dialogue act annotation and place it under
-
CrossWOZ
- We offers a rule-based user simulator and a complete set of models for building a pipeline system on the CrossWOZ dataset. We correct few state annotation and place it under
data/crosswoz
dir. - Train/val/test size: 5012/500/500. Split as original data.
- LICENSE: Attribution 4.0 International, url: http://creativecommons.org/licenses/by/4.0/
- We offers a rule-based user simulator and a complete set of models for building a pipeline system on the CrossWOZ dataset. We correct few state annotation and place it under
-
Camrest
- We add system dialogue act (inform, request, nooffer) and place it under
data/camrest
dir. - Train/val/test size: 406/135/135. Split as original data.
- LICENSE: Attribution 4.0 International, url: http://creativecommons.org/licenses/by/4.0/
- We add system dialogue act (inform, request, nooffer) and place it under
-
Dealornot
- Placed under
data/dealornot
dir. - Train/val/test size: 5048/234/526. Split as original data.
- LICENSE: Attribution-NonCommercial 4.0 International, url: https://creativecommons.org/licenses/by-nc/4.0/
- Placed under