Skip to content
Snippets Groups Projects
Unverified Commit dc4f268d authored by zhuqi's avatar zhuqi Committed by GitHub
Browse files

Merge pull request #110 from ConvLab/readme

add back bertnlu test.py. rm test.py in .gitignore
parents 4d6df860 2d6882db
No related branches found
No related tags found
No related merge requests found
......@@ -101,7 +101,6 @@ convlab/dst/trade/multiwoz/model/
convlab/dst/trade/multiwoz_config/
convlab/deploy/bert_multiwoz_all.zip
convlab/deploy/templates/dialog_eg.html
test.py
*convlab/policy/vector/action_dicts
*.egg-info
......
import argparse
import os
import json
import random
import numpy as np
import torch
from convlab.nlu.jointBERT.dataloader import Dataloader
from convlab.nlu.jointBERT.jointBERT import JointBERT
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
parser = argparse.ArgumentParser(description="Test a model.")
parser.add_argument('--config_path',
help='path to config file')
if __name__ == '__main__':
args = parser.parse_args()
config = json.load(open(args.config_path))
data_dir = config['data_dir']
output_dir = config['output_dir']
log_dir = config['log_dir']
DEVICE = config['DEVICE']
set_seed(config['seed'])
if 'unified_datasets' in data_dir:
dataset_name = config['dataset_name']
print('-' * 20 + f'dataset:unified_datasets:{dataset_name}' + '-' * 20)
from convlab.nlu.jointBERT.unified_datasets.postprocess import is_slot_da, calculateF1, recover_intent
elif 'multiwoz' in data_dir:
print('-'*20 + 'dataset:multiwoz' + '-'*20)
from convlab.nlu.jointBERT.multiwoz.postprocess import is_slot_da, calculateF1, recover_intent
elif 'camrest' in data_dir:
print('-' * 20 + 'dataset:camrest' + '-' * 20)
from convlab.nlu.jointBERT.camrest.postprocess import is_slot_da, calculateF1, recover_intent
elif 'crosswoz' in data_dir:
print('-' * 20 + 'dataset:crosswoz' + '-' * 20)
from convlab.nlu.jointBERT.crosswoz.postprocess import is_slot_da, calculateF1, recover_intent
intent_vocab = json.load(open(os.path.join(data_dir, 'intent_vocab.json')))
tag_vocab = json.load(open(os.path.join(data_dir, 'tag_vocab.json')))
dataloader = Dataloader(intent_vocab=intent_vocab, tag_vocab=tag_vocab,
pretrained_weights=config['model']['pretrained_weights'])
print('intent num:', len(intent_vocab))
print('tag num:', len(tag_vocab))
for data_key in ['val', 'test']:
dataloader.load_data(json.load(open(os.path.join(data_dir, '{}_data.json'.format(data_key)))), data_key,
cut_sen_len=0, use_bert_tokenizer=config['use_bert_tokenizer'])
print('{} set size: {}'.format(data_key, len(dataloader.data[data_key])))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
model = JointBERT(config['model'], DEVICE, dataloader.tag_dim, dataloader.intent_dim)
model.load_state_dict(torch.load(os.path.join(output_dir, 'pytorch_model.bin'), DEVICE))
model.to(DEVICE)
model.eval()
batch_size = config['model']['batch_size']
data_key = 'test'
predict_golden = {'intent': [], 'slot': [], 'overall': []}
slot_loss, intent_loss = 0, 0
for pad_batch, ori_batch, real_batch_size in dataloader.yield_batches(batch_size, data_key=data_key):
pad_batch = tuple(t.to(DEVICE) for t in pad_batch)
word_seq_tensor, tag_seq_tensor, intent_tensor, word_mask_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor = pad_batch
if not config['model']['context']:
context_seq_tensor, context_mask_tensor = None, None
with torch.no_grad():
slot_logits, intent_logits, batch_slot_loss, batch_intent_loss = model.forward(word_seq_tensor,
word_mask_tensor,
tag_seq_tensor,
tag_mask_tensor,
intent_tensor,
context_seq_tensor,
context_mask_tensor)
slot_loss += batch_slot_loss.item() * real_batch_size
intent_loss += batch_intent_loss.item() * real_batch_size
for j in range(real_batch_size):
predicts = recover_intent(dataloader, intent_logits[j], slot_logits[j], tag_mask_tensor[j],
ori_batch[j][0], ori_batch[j][-4])
labels = ori_batch[j][3]
predict_golden['overall'].append({
'predict': predicts,
'golden': labels
})
if isinstance(predicts, dict):
predict_golden['slot'].append({
'predict': {k:v for k, v in predicts.items() if is_slot_da(k)},
'golden': {k:v for k, v in labels.items() if is_slot_da(k)}
})
predict_golden['intent'].append({
'predict': {k:v for k, v in predicts.items() if not is_slot_da(k)},
'golden': {k:v for k, v in labels.items() if not is_slot_da(k)}
})
else:
assert isinstance(predicts, list)
predict_golden['slot'].append({
'predict': [x for x in predicts if is_slot_da(x)],
'golden': [x for x in labels if is_slot_da(x)]
})
predict_golden['intent'].append({
'predict': [x for x in predicts if not is_slot_da(x)],
'golden': [x for x in labels if not is_slot_da(x)]
})
print('[%d|%d] samples' % (len(predict_golden['overall']), len(dataloader.data[data_key])))
total = len(dataloader.data[data_key])
slot_loss /= total
intent_loss /= total
print('%d samples %s' % (total, data_key))
print('\t slot loss:', slot_loss)
print('\t intent loss:', intent_loss)
for x in ['intent', 'slot', 'overall']:
precision, recall, F1 = calculateF1(predict_golden[x])
print('-' * 20 + x + '-' * 20)
print('\t Precision: %.2f' % (100 * precision))
print('\t Recall: %.2f' % (100 * recall))
print('\t F1: %.2f' % (100 * F1))
output_file = os.path.join(output_dir, 'output.json')
json.dump(predict_golden['overall'], open(output_file, 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment