Skip to content
Snippets Groups Projects
Unverified Commit c66e7429 authored by zhuqi's avatar zhuqi Committed by GitHub
Browse files

Merge pull request #54 from ConvLab/pre-training

t5 nlg, multiwoz21 context=0: bleu 35.3; context=3: bleu 35.7
parents a74d1579 e43d0ab7
No related branches found
No related tags found
No related merge requests found
import json
import os
from convlab2.util import load_dataset, load_nlg_data
def merge(dataset_name, speaker, save_dir, context_window_size, predict_result):
assert os.path.exists(predict_result)
dataset = load_dataset(dataset_name)
data = load_nlg_data(dataset, data_split='test', speaker=speaker, use_context=context_window_size>0, context_window_size=context_window_size)['test']
if save_dir is None:
save_dir = os.path.dirname(predict_result)
else:
os.makedirs(save_dir, exist_ok=True)
predict_result = [json.loads(x)['predictions'].strip() for x in open(predict_result)]
for sample, prediction in zip(data, predict_result):
sample['predictions'] = {'utterance': prediction}
json.dump(data, open(os.path.join(save_dir, 'predictions.json'), 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser(description="merge predict results with original data for unified NLU evaluation")
parser.add_argument('--dataset', '-d', metavar='dataset_name', type=str, help='name of the unified dataset')
parser.add_argument('--speaker', '-s', type=str, choices=['user', 'system', 'all'], help='speaker(s) of utterances')
parser.add_argument('--save_dir', type=str, help='merged data will be saved as $save_dir/predictions.json. default: on the same directory as predict_result')
parser.add_argument('--context_window_size', '-c', type=int, default=0, help='how many contextual utterances are considered')
parser.add_argument('--predict_result', '-p', type=str, required=True, help='path to the output file generated_predictions.json')
args = parser.parse_args()
print(args)
merge(args.dataset, args.speaker, args.save_dir, args.context_window_size, args.predict_result)
n_gpus=1
task_name="nlg"
dataset_name=$1
speaker="system"
context_window_size=$2
data_dir="data/${task_name}/${dataset_name}/${speaker}/context_${context_window_size}"
output_dir="output/${task_name}/${dataset_name}/${speaker}/context_${context_window_size}"
cache_dir="../cache"
logging_dir="${output_dir}/runs"
train_file="${data_dir}/train.json"
validation_file="${data_dir}/validation.json"
test_file="${data_dir}/test.json"
metric_name_or_path="nlg_metric.py"
metric_for_best_model="bleu"
source_column="context+da"
target_column="response"
truncation_side="right"
max_source_length=512
max_target_length=512
model_name_or_path="t5-small"
per_device_train_batch_size=128
per_device_eval_batch_size=64
gradient_accumulation_steps=4
lr=1e-3
num_train_epochs=10
python ../create_data.py -t ${task_name} -d ${dataset_name} -s ${speaker} -c ${context_window_size}
python ../run_seq2seq.py \
--task_name ${task_name} \
--train_file ${train_file} \
--validation_file ${validation_file} \
--source_column ${source_column} \
--target_column ${target_column} \
--max_source_length ${max_source_length} \
--max_target_length ${max_target_length} \
--truncation_side ${truncation_side} \
--model_name_or_path ${model_name_or_path} \
--do_train \
--do_eval \
--save_strategy epoch \
--evaluation_strategy epoch \
--prediction_loss_only \
--cache_dir ${cache_dir} \
--output_dir ${output_dir} \
--logging_dir ${logging_dir} \
--overwrite_output_dir \
--preprocessing_num_workers 4 \
--per_device_train_batch_size ${per_device_train_batch_size} \
--per_device_eval_batch_size ${per_device_eval_batch_size} \
--gradient_accumulation_steps ${gradient_accumulation_steps} \
--learning_rate ${lr} \
--num_train_epochs ${num_train_epochs} \
--debug underflow_overflow \
--adafactor \
--gradient_checkpointing
python ../run_seq2seq.py \
--task_name ${task_name} \
--test_file ${test_file} \
--source_column ${source_column} \
--target_column ${target_column} \
--max_source_length ${max_source_length} \
--max_target_length ${max_target_length} \
--truncation_side ${truncation_side} \
--model_name_or_path ${output_dir} \
--do_predict \
--predict_with_generate \
--metric_name_or_path ${metric_name_or_path} \
--cache_dir ${cache_dir} \
--output_dir ${output_dir} \
--logging_dir ${logging_dir} \
--overwrite_output_dir \
--preprocessing_num_workers 4 \
--per_device_eval_batch_size ${per_device_eval_batch_size}
python merge_predict_res.py -d ${dataset_name} -s ${speaker} -c ${context_window_size} -p ${output_dir}/generated_predictions.json
python ../../../nlg/evaluate_unified_datasets.py -p ${output_dir}/predictions.json
import json
from pprint import pprint
import sacrebleu
def evaluate(predict_result):
predict_result = json.load(open(predict_result))
metrics = {}
predictions, references = [], []
for sample in predict_result:
references.append(sample['utterance'])
predictions.append(sample['predictions']['utterance'])
metrics['bleu'] = sacrebleu.corpus_bleu(predictions, [references], lowercase=True).score
return metrics
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser(description="calculate NLU metrics for unified datasets")
parser.add_argument('--predict_result', '-p', type=str, required=True, help='path to the prediction file that in the unified data format')
args = parser.parse_args()
print(args)
metrics = evaluate(args.predict_result)
pprint(metrics)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment