Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
emoUS-public
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
general
dsml
emoUS-public
Commits
6d5d3479
Commit
6d5d3479
authored
2 years ago
by
Hsien-Chin Lin
Browse files
Options
Downloads
Patches
Plain Diff
ablation study
parent
4e28a9f0
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
convlab/policy/emoTUS/emoTUS.py
+114
-63
114 additions, 63 deletions
convlab/policy/emoTUS/emoTUS.py
convlab/policy/emoTUS/evaluate.py
+29
-37
29 additions, 37 deletions
convlab/policy/emoTUS/evaluate.py
convlab/policy/emoTUS/token_map.py
+11
-13
11 additions, 13 deletions
convlab/policy/emoTUS/token_map.py
with
154 additions
and
113 deletions
convlab/policy/emoTUS/emoTUS.py
+
114
−
63
View file @
6d5d3479
...
...
@@ -15,11 +15,12 @@ DEBUG = False
class
UserActionPolicy
(
GenTUSUserActionPolicy
):
def
__init__
(
self
,
model_checkpoint
,
mode
=
"
semantic
"
,
only_action
=
Tru
e
,
max_turn
=
40
,
**
kwargs
):
def
__init__
(
self
,
model_checkpoint
,
mode
=
"
language
"
,
only_action
=
Fals
e
,
max_turn
=
40
,
**
kwargs
):
self
.
use_sentiment
=
kwargs
.
get
(
"
use_sentiment
"
,
False
)
print
(
"
use_sentiment
"
,
self
.
use_sentiment
)
self
.
add_persona
=
kwargs
.
get
(
"
add_persona
"
,
False
)
self
.
emotion_mid
=
kwargs
.
get
(
"
emotion_mid
"
,
False
)
super
().
__init__
(
model_checkpoint
,
mode
,
only_action
,
max_turn
,
**
kwargs
)
print
(
"
sentiment
"
,
self
.
use_sentiment
)
weight
=
kwargs
.
get
(
"
weight
"
,
None
)
self
.
kg
=
KnowledgeGraph
(
tokenizer
=
self
.
tokenizer
,
...
...
@@ -52,22 +53,17 @@ class UserActionPolicy(GenTUSUserActionPolicy):
else
:
history
=
self
.
usr_acts
[
-
1
*
self
.
max_history
:]
# TODO add user info? impolite? -> check self.use_sentiment
if
self
.
use_sentiment
:
# TODO how to get event and user politeness?
input_dict
=
{
"
system
"
:
sys_act
,
"
goal
"
:
self
.
goal
.
get_goal_list
(),
"
history
"
:
history
,
"
turn
"
:
str
(
int
(
self
.
time_step
/
2
))}
if
self
.
add_persona
:
for
user
,
info
in
self
.
user_info
.
items
():
input_dict
[
user
]
=
info
inputs
=
json
.
dumps
(
input_dict
)
else
:
inputs
=
json
.
dumps
({
"
system
"
:
sys_act
,
"
goal
"
:
self
.
goal
.
get_goal_list
(),
"
history
"
:
history
,
"
turn
"
:
str
(
int
(
self
.
time_step
/
2
))})
with
torch
.
no_grad
():
if
emotion
==
"
all
"
:
raw_output
=
self
.
generate_from_emotion
(
...
...
@@ -91,16 +87,12 @@ class UserActionPolicy(GenTUSUserActionPolicy):
raw_output
=
self
.
_generate_action
(
raw_inputs
=
inputs
,
mode
=
mode
,
allow_general_intent
=
allow_general_intent
)
output
=
self
.
_parse_output
(
raw_output
)
print
(
output
)
self
.
semantic_action
=
self
.
_remove_illegal_action
(
output
[
"
action
"
])
if
not
self
.
only_action
:
self
.
utterance
=
output
[
"
text
"
]
self
.
emotion
=
output
[
"
emotion
"
]
if
self
.
use_sentiment
:
self
.
sentiment
=
output
[
"
sentiment
"
]
# print("---> sentiment", self.sentiment)
# print("---> emotion", self.emotion)
# print("---> self.utterance", self.utterance)
if
self
.
is_finish
():
self
.
emotion
,
self
.
semantic_action
,
self
.
utterance
=
self
.
_good_bye
()
...
...
@@ -113,12 +105,7 @@ class UserActionPolicy(GenTUSUserActionPolicy):
del
inputs
if
self
.
mode
==
"
language
"
:
# print("in", sys_act)
# print("out", self.utterance)
return
self
.
utterance
else
:
return
self
.
semantic_action
def
_parse_output
(
self
,
in_str
):
in_str
=
str
(
in_str
)
...
...
@@ -135,25 +122,24 @@ class UserActionPolicy(GenTUSUserActionPolicy):
print
(
"
-
"
*
20
)
return
action
def
_generate_action
(
self
,
raw_inputs
,
mode
=
"
max
"
,
allow_general_intent
=
True
,
emotion_mode
=
"
normal
"
):
self
.
kg
.
parse_input
(
raw_inputs
)
model_input
=
self
.
vector
.
encode
(
raw_inputs
,
self
.
max_in_len
)
# start token
self
.
seq
=
torch
.
zeros
(
1
,
self
.
max_out_len
,
device
=
self
.
device
).
long
()
pos
=
self
.
_update_seq
([
0
],
0
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_json
'
),
pos
)
if
self
.
use_sentiment
:
def
_update_sentiment
(
self
,
pos
,
model_input
,
mode
):
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_sentiment
'
),
pos
)
sentiment
=
self
.
_get_sentiment
(
model_input
,
self
.
seq
[:
1
,
:
pos
],
mode
)
pos
=
self
.
_update_seq
(
sentiment
[
"
token_id
"
],
pos
)
else
:
return
sentiment
,
pos
def
_update_emotion
(
self
,
pos
,
model_input
,
mode
,
emotion_mode
,
sentiment
=
None
):
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_emotion
'
),
pos
)
emotion
=
self
.
_get_emotion
(
model_input
,
self
.
seq
[:
1
,
:
pos
],
mode
,
emotion_mode
)
model_input
,
self
.
seq
[:
1
,
:
pos
],
mode
,
emotion_mode
,
sentiment
)
pos
=
self
.
_update_seq
(
emotion
[
"
token_id
"
],
pos
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
sep_token
'
),
pos
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_act
'
),
pos
)
return
pos
# get semantic actions
def
_update_semantic_act
(
self
,
pos
,
model_input
,
mode
,
allow_general_intent
):
mode
=
"
max
"
for
act_len
in
range
(
self
.
max_action_len
):
pos
=
self
.
_get_semantic_action
(
model_input
,
pos
,
mode
,
allow_general_intent
)
...
...
@@ -164,16 +150,82 @@ class UserActionPolicy(GenTUSUserActionPolicy):
if
terminate
:
break
return
pos
if
self
.
only_action
:
return
self
.
vector
.
decode
(
self
.
seq
[
0
,
:
pos
])
def
_sent_act_emo
(
self
,
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
):
# sent
sentiment
,
pos
=
self
.
_update_sentiment
(
pos
,
model_input
,
mode
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
sep_token
'
),
pos
)
# act
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_act
'
),
pos
)
pos
=
self
.
_update_semantic_act
(
pos
,
model_input
,
mode
,
allow_general_intent
)
# emo
pos
=
self
.
_update_emotion
(
pos
,
model_input
,
mode
,
emotion_mode
,
sentiment
[
"
token_name
"
])
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
sep_token
'
),
pos
)
if
self
.
use_sentiment
:
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_emotion
'
),
pos
)
emotion
=
self
.
_get_emotion
(
model_input
,
self
.
seq
[:
1
,
:
pos
],
mode
,
emotion_mode
,
sentiment
[
"
token_name
"
])
pos
=
self
.
_update_seq
(
emotion
[
"
token_id
"
],
pos
)
return
pos
def
_sent_emo_act
(
self
,
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
):
# sent
sentiment
,
pos
=
self
.
_update_sentiment
(
pos
,
model_input
,
mode
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
sep_token
'
),
pos
)
# emo
pos
=
self
.
_update_emotion
(
pos
,
model_input
,
mode
,
emotion_mode
,
sentiment
[
"
token_name
"
])
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
sep_token
'
),
pos
)
# act
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_act
'
),
pos
)
pos
=
self
.
_update_semantic_act
(
pos
,
model_input
,
mode
,
allow_general_intent
)
return
pos
def
_emo_act
(
self
,
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
):
# emo
pos
=
self
.
_update_emotion
(
pos
,
model_input
,
mode
,
emotion_mode
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
sep_token
'
),
pos
)
# act
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_act
'
),
pos
)
pos
=
self
.
_update_semantic_act
(
pos
,
model_input
,
mode
,
allow_general_intent
)
return
pos
def
_act_emo
(
self
,
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
):
# act
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_act
'
),
pos
)
pos
=
self
.
_update_semantic_act
(
pos
,
model_input
,
mode
,
allow_general_intent
)
# emo
pos
=
self
.
_update_emotion
(
pos
,
model_input
,
mode
,
emotion_mode
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
sep_token
'
),
pos
)
return
pos
def
_generate_action
(
self
,
raw_inputs
,
mode
=
"
max
"
,
allow_general_intent
=
True
,
emotion_mode
=
"
normal
"
):
self
.
kg
.
parse_input
(
raw_inputs
)
model_input
=
self
.
vector
.
encode
(
raw_inputs
,
self
.
max_in_len
)
# start token
self
.
seq
=
torch
.
zeros
(
1
,
self
.
max_out_len
,
device
=
self
.
device
).
long
()
pos
=
self
.
_update_seq
([
0
],
0
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
'
start_json
'
),
pos
)
if
self
.
use_sentiment
and
self
.
emotion_mid
:
pos
=
self
.
_sent_act_emo
(
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
)
elif
self
.
use_sentiment
and
not
self
.
emotion_mid
:
pos
=
self
.
_sent_emo_act
(
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
)
elif
not
self
.
use_sentiment
and
self
.
emotion_mid
:
pos
=
self
.
_act_emo
(
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
)
else
:
pos
=
self
.
_emo_act
(
pos
,
model_input
,
mode
,
emotion_mode
,
allow_general_intent
)
pos
=
self
.
_update_seq
(
self
.
token_map
.
get_id
(
"
start_text
"
),
pos
)
text
=
self
.
_get_text
(
model_input
,
pos
)
...
...
@@ -332,8 +384,6 @@ class UserActionPolicy(GenTUSUserActionPolicy):
class
UserPolicy
(
Policy
):
def
__init__
(
self
,
model_checkpoint
,
mode
=
"
semantic
"
,
only_action
=
True
,
sample
=
False
,
action_penalty
=
False
,
**
kwargs
):
...
...
@@ -342,7 +392,8 @@ class UserPolicy(Policy):
os
.
mkdir
(
os
.
path
.
dirname
(
model_checkpoint
))
model_downloader
(
os
.
path
.
dirname
(
model_checkpoint
),
"
https://zenodo.org/record/7372442/files/multiwoz21-exp.zip
"
)
only_action
=
False
mode
=
"
language
"
self
.
policy
=
UserActionPolicy
(
model_checkpoint
,
mode
=
mode
,
...
...
@@ -385,15 +436,15 @@ if __name__ == "__main__":
# from convlab.nlu.jointBERT.multiwoz import BERTNLU
from
convlab.util.custom_util
import
set_seed
set_seed
(
20220220
)
use_sentiment
,
emotion_mid
=
True
,
True
set_seed
(
0
)
# Test semantic level behaviour
model_checkpoint
=
'
convlab/policy/emoTUS/unify/experiments/emowoz+dialmage_0_1/23-01-11-15-17
'
usr_policy
=
UserPolicy
(
model_checkpoint
,
mode
=
"
language
"
,
only_action
=
False
,
use_sentiment
=
True
,
sample
=
True
)
sample
=
True
,
use_sentiment
=
use_sentiment
,
emotion_mid
=
emotion_mid
)
# usr_policy.policy.load(os.path.join(model_checkpoint, "pytorch_model.bin"))
usr_nlu
=
None
# BERTNLU()
usr
=
PipelineAgent
(
usr_nlu
,
None
,
usr_policy
,
None
,
name
=
'
user
'
)
...
...
This diff is collapsed.
Click to expand it.
convlab/policy/emoTUS/evaluate.py
+
29
−
37
View file @
6d5d3479
...
...
@@ -28,35 +28,34 @@ def arg_parser():
default
=
""
)
parser
.
add_argument
(
"
--generated-file
"
,
type
=
str
,
help
=
"
the generated results
"
,
default
=
""
)
parser
.
add_argument
(
"
--only-action
"
,
action
=
"
store_true
"
)
parser
.
add_argument
(
"
--dataset
"
,
default
=
"
multiwoz
"
)
parser
.
add_argument
(
"
--do-semantic
"
,
action
=
"
store_true
"
,
help
=
"
do semantic evaluation
"
)
parser
.
add_argument
(
"
--do-nlg
"
,
action
=
"
store_true
"
,
help
=
"
do nlg generation
"
)
parser
.
add_argument
(
"
--do-golden-nlg
"
,
action
=
"
store_true
"
,
help
=
"
do golden nlg generation
"
)
parser
.
add_argument
(
"
--no-neutral
"
,
action
=
"
store_true
"
,
help
=
"
skip neutral emotion
"
)
parser
.
add_argument
(
"
--use-sentiment
"
,
action
=
"
store_true
"
)
parser
.
add_argument
(
"
--emotion-mid
"
,
action
=
"
store_true
"
)
parser
.
add_argument
(
"
--weight
"
,
type
=
float
,
default
=
None
)
return
parser
.
parse_args
()
class
Evaluator
:
def
__init__
(
self
,
model_checkpoint
,
dataset
,
model_weight
=
None
,
only_action
=
False
,
use_sentiment
=
False
,
weight
=
None
):
def
__init__
(
self
,
model_checkpoint
,
dataset
,
model_weight
=
None
,
**
kwargs
):
self
.
dataset
=
dataset
self
.
model_checkpoint
=
model_checkpoint
self
.
model_weight
=
model_weight
self
.
time
=
f
"
{
datetime
.
now
().
strftime
(
'
%y-%m-%d-%H-%M
'
)
}
"
self
.
use_sentiment
=
use_sentiment
self
.
use_sentiment
=
kwargs
.
get
(
"
use_sentiment
"
,
False
)
self
.
add_persona
=
kwargs
.
get
(
"
add_persona
"
,
False
)
self
.
emotion_mid
=
kwargs
.
get
(
"
emotion_mid
"
,
False
)
weight
=
kwargs
.
get
(
"
weight
"
,
None
)
self
.
usr
=
UserActionPolicy
(
model_checkpoint
,
only_action
=
only_action
,
dataset
=
self
.
dataset
,
use_sentiment
=
use_sentiment
,
use_sentiment
=
self
.
use_sentiment
,
add_persona
=
self
.
add_persona
,
emotion_mid
=
self
.
emotion_mid
,
weight
=
weight
)
self
.
usr
.
load
(
os
.
path
.
join
(
model_checkpoint
,
"
pytorch_model.bin
"
))
self
.
r
=
{
"
input
"
:
[],
...
...
@@ -66,7 +65,8 @@ class Evaluator:
"
gen_acts
"
:
[],
"
gen_utts
"
:
[],
"
gen_emotion
"
:
[]}
if
use_sentiment
:
if
self
.
use_sentiment
:
self
.
r
[
"
golden_sentiment
"
]
=
[]
self
.
r
[
"
gen_sentiment
"
]
=
[]
...
...
@@ -81,17 +81,13 @@ class Evaluator:
for
x
in
self
.
r
:
self
.
r
[
x
].
append
(
temp
[
x
])
def
generate_results
(
self
,
f_eval
,
golden
=
False
,
no_neutral
=
False
):
def
generate_results
(
self
,
f_eval
,
golden
=
False
):
emotion_mode
=
"
normal
"
if
no_neutral
:
emotion_mode
=
"
no_neutral
"
in_file
=
json
.
load
(
open
(
f_eval
))
for
dialog
in
tqdm
(
in_file
[
'
dialog
'
]):
for
dialog
in
tqdm
(
in_file
[
'
dialog
'
]
[:
2
]
):
inputs
=
dialog
[
"
in
"
]
labels
=
self
.
usr
.
_parse_output
(
dialog
[
"
out
"
])
if
no_neutral
and
labels
[
"
emotion
"
].
lower
()
==
"
neutral
"
:
continue
if
golden
:
usr_act
=
labels
[
"
action
"
]
...
...
@@ -138,10 +134,10 @@ class Evaluator:
result
.
append
(
temp
)
return
result
def
nlg_evaluation
(
self
,
input_file
=
None
,
generated_file
=
None
,
golden
=
False
,
no_neutral
=
False
):
def
nlg_evaluation
(
self
,
input_file
=
None
,
generated_file
=
None
,
golden
=
False
):
if
input_file
:
print
(
"
Force generation
"
)
self
.
generate_results
(
input_file
,
golden
,
no_neutral
)
self
.
generate_results
(
input_file
,
golden
)
elif
generated_file
:
self
.
read_generated_result
(
generated_file
)
...
...
@@ -240,7 +236,7 @@ class Evaluator:
for
metric
in
scores
:
result
[
metric
]
=
sum
(
scores
[
metric
])
/
len
(
scores
[
metric
])
print
(
f
"
{
metric
}
:
{
result
[
metric
]
}
"
)
# TODO no neutral
emo_score
=
emotion_score
(
golden_emotions
,
gen_emotions
,
...
...
@@ -338,23 +334,19 @@ def main():
eval
=
Evaluator
(
args
.
model_checkpoint
,
args
.
dataset
,
args
.
model_weight
,
args
.
only_action
,
args
.
use_sentiment
,
use_sentiment
=
args
.
use_sentiment
,
emotion_mid
=
args
.
emotion_mid
,
weight
=
args
.
weight
)
print
(
"
model checkpoint
"
,
args
.
model_checkpoint
)
print
(
"
generated_file
"
,
args
.
generated_file
)
print
(
"
input_file
"
,
args
.
input_file
)
with
torch
.
no_grad
():
if
args
.
do_semantic
:
eval
.
evaluation
(
args
.
input_file
)
if
args
.
do_nlg
:
if
args
.
generated_file
:
generated_file
=
args
.
generated_file
else
:
nlg_result
=
eval
.
nlg_evaluation
(
input_file
=
args
.
input_file
,
generated_file
=
args
.
generated_file
,
golden
=
args
.
do_golden_nlg
,
no_neutral
=
args
.
no_neutral
)
golden
=
args
.
do_golden_nlg
)
generated_file
=
nlg_result
eval
.
evaluation
(
args
.
input_file
,
...
...
This diff is collapsed.
Click to expand it.
convlab/policy/emoTUS/token_map.py
+
11
−
13
View file @
6d5d3479
...
...
@@ -2,28 +2,26 @@ import json
class
tokenMap
:
def
__init__
(
self
,
tokenizer
,
use_sentiment
=
False
):
def
__init__
(
self
,
tokenizer
,
**
kwargs
):
self
.
tokenizer
=
tokenizer
self
.
token_name
=
{}
self
.
hash_map
=
{}
self
.
debug
=
False
self
.
use_sentiment
=
use_sentiment
self
.
default
()
def
default
(
self
,
only_action
=
False
):
self
.
format_tokens
=
{
'
start_json
'
:
'
{
"
emotion
"
:
"'
,
# 49643, 10845, 7862, 646
'
start_act
'
:
'
action
"
: [[
"'
,
# 49329
'
sep_token
'
:
'"
,
"'
,
# 1297('",'), 22
'
sep_act
'
:
'"
], [
"'
,
# 49177
'
end_act
'
:
'"
]],
"'
,
# 42248, 7479, 22
'
start_text
'
:
'
text
"
:
"'
,
# 29015, 7862, 22
'
end_json
'
:
'
}
'
,
# 24303
'
end_json_2
'
:
'"
}
'
# 48805
'
start_json
'
:
'
{
"'
,
'
start_sentiment
'
:
'
sentiment
"
:
"'
,
'
start_emotion
'
:
'
emotion
"
:
"'
,
'
start_act
'
:
'
action
"
: [[
"'
,
'
sep_token
'
:
'"
,
"'
,
'
sep_act
'
:
'"
], [
"'
,
'
end_act
'
:
'"
]],
"'
,
'
start_text
'
:
'
text
"
:
"'
,
'
end_json
'
:
'
}
'
,
'
end_json_2
'
:
'"
}
'
}
if
self
.
use_sentiment
:
self
.
format_tokens
[
'
start_json
'
]
=
'
{
"
sentiment
"
:
"'
self
.
format_tokens
[
'
start_emotion
'
]
=
'
emotion
"
:
"'
if
only_action
:
self
.
format_tokens
[
'
end_act
'
]
=
'"
]]}
'
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment