Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
emoUS-public
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
general
dsml
emoUS-public
Commits
3e55b7b6
Commit
3e55b7b6
authored
2 years ago
by
linh
Browse files
Options
Downloads
Plain Diff
Merge branch 'genTUS_v2' of gitlab.cs.uni-duesseldorf.de:dsml/convlab/ConvLab3 into genTUS_v2
parents
1c14365f
ce5a0f9a
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
convlab/policy/emoTUS/emotion_eval.py
+320
-0
320 additions, 0 deletions
convlab/policy/emoTUS/emotion_eval.py
with
320 additions
and
0 deletions
convlab/policy/emoTUS/emotion_eval.py
0 → 100644
+
320
−
0
View file @
3e55b7b6
import
json
import
os
import
sys
from
argparse
import
ArgumentParser
from
datetime
import
datetime
import
matplotlib.pyplot
as
plt
import
torch
from
datasets
import
load_metric
from
sklearn
import
metrics
from
tqdm
import
tqdm
from
convlab.nlg.evaluate
import
fine_SER
from
convlab.policy.emoTUS.emoTUS
import
UserActionPolicy
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))))
def
arg_parser
():
parser
=
ArgumentParser
()
parser
.
add_argument
(
"
--model-checkpoint
"
,
type
=
str
,
help
=
"
the model path
"
)
parser
.
add_argument
(
"
--input-file
"
,
type
=
str
,
help
=
"
the testing input file
"
,
default
=
""
)
parser
.
add_argument
(
"
--generated-file
"
,
type
=
str
,
help
=
"
the generated results
"
,
default
=
""
)
parser
.
add_argument
(
"
--dataset
"
,
default
=
"
multiwoz
"
)
# model parameter
parser
.
add_argument
(
"
--use-sentiment
"
,
action
=
"
store_true
"
)
parser
.
add_argument
(
"
--emotion-mid
"
,
action
=
"
store_true
"
)
parser
.
add_argument
(
"
--weight
"
,
type
=
float
,
default
=
None
)
parser
.
add_argument
(
"
--sample
"
,
action
=
"
store_true
"
)
return
parser
.
parse_args
()
class
Evaluator
:
def
__init__
(
self
,
model_checkpoint
,
dataset
,
**
kwargs
):
self
.
dataset
=
dataset
self
.
model_checkpoint
=
model_checkpoint
self
.
time
=
f
"
{
datetime
.
now
().
strftime
(
'
%y-%m-%d-%H-%M
'
)
}
"
self
.
use_sentiment
=
kwargs
.
get
(
"
use_sentiment
"
,
False
)
self
.
add_persona
=
kwargs
.
get
(
"
add_persona
"
,
False
)
self
.
emotion_mid
=
kwargs
.
get
(
"
emotion_mid
"
,
False
)
weight
=
kwargs
.
get
(
"
weight
"
,
None
)
self
.
sample
=
kwargs
.
get
(
"
sample
"
,
False
)
self
.
usr
=
UserActionPolicy
(
model_checkpoint
,
dataset
=
self
.
dataset
,
use_sentiment
=
self
.
use_sentiment
,
add_persona
=
self
.
add_persona
,
emotion_mid
=
self
.
emotion_mid
,
weight
=
weight
)
self
.
usr
.
load
(
os
.
path
.
join
(
model_checkpoint
,
"
pytorch_model.bin
"
))
"""
self.r = {
"
input
"
,
"
golden_acts
"
,
"
golden_utts
"
,
"
golden_emotions
"
,
emotion_acts, emotion_utts}
"""
self
.
r
=
{
"
input
"
:
[],
"
golden_acts
"
:
[],
"
golden_utts
"
:
[],
"
golden_emotion
"
:
[]}
if
self
.
use_sentiment
:
self
.
r
[
"
golden_sentiment
"
]
=
[]
self
.
r
[
"
gen_sentiment
"
]
=
[]
self
.
emotion_list
=
[]
for
emotion
in
json
.
load
(
open
(
"
convlab/policy/emoTUS/emotion.json
"
)):
self
.
emotion_list
.
append
(
emotion
)
self
.
r
[
f
"
{
emotion
}
_acts
"
]
=
[]
self
.
r
[
f
"
{
emotion
}
_utts
"
]
=
[]
sent2emo
=
json
.
load
(
open
(
"
convlab/policy/emoTUS/sent2emo.json
"
))
self
.
emo2sent
=
{}
for
sent
,
emotions
in
sent2emo
.
items
():
for
emo
in
emotions
:
self
.
emo2sent
[
emo
]
=
sent
def
_append_result
(
self
,
temp
):
for
x
in
self
.
r
:
self
.
r
[
x
].
append
(
temp
[
x
])
def
generate_results
(
self
,
f_eval
,
golden
=
False
):
emotion_mode
=
"
normal
"
in_file
=
json
.
load
(
open
(
f_eval
))
for
dialog
in
tqdm
(
in_file
[
'
dialog
'
][:
2
]):
temp
=
{}
inputs
=
dialog
[
"
in
"
]
labels
=
self
.
usr
.
_parse_output
(
dialog
[
"
out
"
])
response
=
self
.
usr
.
generate_from_emotion
(
raw_inputs
=
inputs
)
temp
[
"
input
"
]
=
inputs
temp
[
"
golden_acts
"
]
=
labels
[
"
action
"
]
temp
[
"
golden_utts
"
]
=
labels
[
"
text
"
]
temp
[
"
golden_emotion
"
]
=
labels
[
"
emotion
"
]
for
emotion
,
resp
in
response
.
items
():
output
=
self
.
usr
.
_parse_output
(
resp
)
temp
[
f
"
{
emotion
}
_acts
"
]
=
output
[
"
action
"
]
temp
[
f
"
{
emotion
}
_utts
"
]
=
output
[
"
text
"
]
if
self
.
use_sentiment
:
temp
[
"
golden_sentiment
"
]
=
labels
[
"
sentiment
"
]
temp
[
"
gen_sentiment
"
]
=
output
[
"
sentiment
"
]
self
.
_append_result
(
temp
)
def
read_generated_result
(
self
,
f_eval
):
in_file
=
json
.
load
(
open
(
f_eval
))
for
dialog
in
tqdm
(
in_file
[
'
dialog
'
]):
for
x
in
dialog
:
self
.
r
[
x
].
append
(
dialog
[
x
])
def
_transform_result
(
self
):
index
=
[
x
for
x
in
self
.
r
]
result
=
[]
for
i
in
range
(
len
(
self
.
r
[
index
[
0
]])):
temp
=
{}
for
x
in
index
:
temp
[
x
]
=
self
.
r
[
x
][
i
]
result
.
append
(
temp
)
return
result
def
nlg_evaluation
(
self
,
input_file
=
None
,
generated_file
=
None
,
golden
=
False
):
if
input_file
:
print
(
"
Force generation
"
)
self
.
generate_results
(
input_file
,
golden
)
elif
generated_file
:
self
.
read_generated_result
(
generated_file
)
else
:
print
(
"
You must specify the input_file or the generated_file
"
)
mode
=
"
max
"
if
self
.
sample
:
mode
=
"
sample
"
nlg_eval
=
{
"
golden
"
:
golden
,
"
mode
"
:
mode
,
"
metrics
"
:
{},
"
dialog
"
:
self
.
_transform_result
()
}
# TODO emotion metric
dir_name
=
self
.
model_checkpoint
json
.
dump
(
nlg_eval
,
open
(
os
.
path
.
join
(
dir_name
,
f
"
{
self
.
time
}
-nlg_eval.json
"
),
'
w
'
),
indent
=
2
)
return
os
.
path
.
join
(
dir_name
,
f
"
{
self
.
time
}
-nlg_eval.json
"
)
def
evaluation
(
self
,
input_file
=
None
,
generated_file
=
None
):
# TODO add emotion
gen_file
=
json
.
load
(
open
(
generated_file
))
self
.
read_generated_result
(
generated_file
)
r
=
{
"
golden_acts
"
:
[],
"
golden_emotions
"
:
[],
"
golden_utts
"
:
[]}
for
emotion
in
self
.
emotion_list
:
r
[
f
"
{
emotion
}
_acts
"
]
=
[]
r
[
f
"
{
emotion
}
_utts
"
]
=
[]
for
dialog
in
gen_file
[
'
dialog
'
]:
r
[
"
golden_acts
"
].
append
(
dialog
[
"
golden_acts
"
])
r
[
"
golden_emotions
"
].
append
(
dialog
[
"
golden_emotion
"
])
r
[
"
golden_utts
"
].
append
(
dialog
[
"
golden_utts
"
])
for
emotion
in
self
.
emotion_list
:
r
[
f
"
{
emotion
}
_acts
"
].
append
(
dialog
[
f
"
{
emotion
}
_acts
"
])
r
[
f
"
{
emotion
}
_utts
"
].
append
(
dialog
[
f
"
{
emotion
}
_utts
"
])
dialog_result
=
gen_file
[
'
dialog
'
]
scores
=
{}
for
emotion
in
self
.
emotion_list
:
scores
[
emotion
]
=
{
"
precision
"
:
[],
"
recall
"
:
[],
"
f1
"
:
[],
"
turn_acc
"
:
[]}
for
gen_act
,
golden_act
in
zip
(
r
[
f
"
{
emotion
}
_acts
"
],
r
[
"
golden_acts
"
]):
s
=
f1_measure
(
preds
=
gen_act
,
labels
=
golden_act
)
for
metric
in
scores
[
emotion
]:
scores
[
emotion
][
metric
].
append
(
s
[
metric
])
result
=
{}
for
emotion
in
self
.
emotion_list
:
result
[
emotion
]
=
{}
result
[
emotion
][
"
bleu
"
]
=
bleu
(
golden_utts
=
r
[
"
golden_utts
"
],
gen_utts
=
r
[
f
"
{
emotion
}
_utts
"
])
result
[
emotion
][
"
SER
"
]
=
SER
(
gen_utts
=
r
[
f
"
{
emotion
}
_utts
"
],
gen_acts
=
r
[
f
"
{
emotion
}
_acts
"
])
for
metric
in
scores
[
emotion
]:
result
[
emotion
][
metric
]
=
sum
(
scores
[
emotion
][
metric
])
/
len
(
scores
[
emotion
][
metric
])
print
(
"
emotion:
"
,
emotion
)
for
metric
in
result
[
emotion
]:
print
(
f
"
{
metric
}
:
{
result
[
emotion
][
metric
]
}
"
)
# for metric in emo_score:
# result[metric] = emo_score[metric]
# print(f"{metric}: {result[metric]}")
result
[
"
dialog
"
]
=
dialog_result
basename
=
"
semantic_evaluation_result
"
json
.
dump
(
result
,
open
(
os
.
path
.
join
(
self
.
model_checkpoint
,
f
"
{
self
.
time
}
-
{
self
.
dataset
}
-
{
basename
}
.json
"
),
'
w
'
),
indent
=
2
)
def
bleu
(
golden_utts
,
gen_utts
):
bleu_metric
=
load_metric
(
"
sacrebleu
"
)
labels
=
[[
utt
]
for
utt
in
golden_utts
]
bleu_score
=
bleu_metric
.
compute
(
predictions
=
gen_utts
,
references
=
labels
,
force
=
True
)
return
bleu_score
[
"
score
"
]
def
SER
(
gen_utts
,
gen_acts
):
missing
,
hallucinate
,
total
,
hallucination_dialogs
,
missing_dialogs
=
fine_SER
(
gen_acts
,
gen_utts
)
return
missing
/
total
def
emotion_score
(
golden_emotions
,
gen_emotions
,
dirname
=
"
.
"
,
time
=
""
,
no_neutral
=
False
):
labels
=
[
"
Neutral
"
,
"
Fearful
"
,
"
Dissatisfied
"
,
"
Apologetic
"
,
"
Abusive
"
,
"
Excited
"
,
"
Satisfied
"
]
if
no_neutral
:
labels
=
labels
[
1
:]
print
(
labels
)
macro_f1
=
metrics
.
f1_score
(
golden_emotions
,
gen_emotions
,
average
=
"
macro
"
)
sep_f1
=
metrics
.
f1_score
(
golden_emotions
,
gen_emotions
,
average
=
None
,
labels
=
labels
)
cm
=
metrics
.
confusion_matrix
(
golden_emotions
,
gen_emotions
,
normalize
=
"
true
"
,
labels
=
labels
)
disp
=
metrics
.
ConfusionMatrixDisplay
(
confusion_matrix
=
cm
,
display_labels
=
labels
)
disp
.
plot
()
plt
.
savefig
(
os
.
path
.
join
(
dirname
,
f
"
{
time
}
-emotion.png
"
))
r
=
{
"
macro_f1
"
:
float
(
macro_f1
),
"
sep_f1
"
:
list
(
sep_f1
),
"
cm
"
:
[
list
(
c
)
for
c
in
list
(
cm
)]}
print
(
r
)
return
r
def
sentiment_score
(
golden_sentiment
,
gen_sentiment
,
dirname
=
"
.
"
,
time
=
""
):
labels
=
[
"
Neutral
"
,
"
Negative
"
,
"
Positive
"
]
print
(
labels
)
macro_f1
=
metrics
.
f1_score
(
golden_sentiment
,
gen_sentiment
,
average
=
"
macro
"
)
sep_f1
=
metrics
.
f1_score
(
golden_sentiment
,
gen_sentiment
,
average
=
None
,
labels
=
labels
)
cm
=
metrics
.
confusion_matrix
(
golden_sentiment
,
gen_sentiment
,
normalize
=
"
true
"
,
labels
=
labels
)
disp
=
metrics
.
ConfusionMatrixDisplay
(
confusion_matrix
=
cm
,
display_labels
=
labels
)
disp
.
plot
()
plt
.
savefig
(
os
.
path
.
join
(
dirname
,
f
"
{
time
}
-sentiment.png
"
))
r
=
{
"
macro_f1
"
:
float
(
macro_f1
),
"
sep_f1
"
:
list
(
sep_f1
),
"
cm
"
:
[
list
(
c
)
for
c
in
list
(
cm
)]}
print
(
r
)
return
r
def
f1_measure
(
preds
,
labels
):
tp
=
0
score
=
{
"
precision
"
:
0
,
"
recall
"
:
0
,
"
f1
"
:
0
,
"
turn_acc
"
:
0
}
for
p
in
preds
:
if
p
in
labels
:
tp
+=
1.0
if
preds
:
score
[
"
precision
"
]
=
tp
/
len
(
preds
)
if
labels
:
score
[
"
recall
"
]
=
tp
/
len
(
labels
)
if
(
score
[
"
precision
"
]
+
score
[
"
recall
"
])
>
0
:
score
[
"
f1
"
]
=
2
*
(
score
[
"
precision
"
]
*
score
[
"
recall
"
])
/
\
(
score
[
"
precision
"
]
+
score
[
"
recall
"
])
if
tp
==
len
(
preds
)
and
tp
==
len
(
labels
):
score
[
"
turn_acc
"
]
=
1
return
score
def
main
():
args
=
arg_parser
()
eval
=
Evaluator
(
args
.
model_checkpoint
,
args
.
dataset
,
use_sentiment
=
args
.
use_sentiment
,
emotion_mid
=
args
.
emotion_mid
,
weight
=
args
.
weight
,
sample
=
args
.
sample
)
print
(
"
model checkpoint
"
,
args
.
model_checkpoint
)
print
(
"
generated_file
"
,
args
.
generated_file
)
print
(
"
input_file
"
,
args
.
input_file
)
with
torch
.
no_grad
():
if
args
.
generated_file
:
generated_file
=
args
.
generated_file
else
:
nlg_result
=
eval
.
nlg_evaluation
(
input_file
=
args
.
input_file
,
generated_file
=
args
.
generated_file
)
generated_file
=
nlg_result
eval
.
evaluation
(
args
.
input_file
,
generated_file
)
if
__name__
==
'
__main__
'
:
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment