Skip to content
Snippets Groups Projects
Select Git revision
  • fb70aed497e191fc512bd9c5c93cb0213bc559d5
  • master default protected
  • emoUS
  • add_default_vectorizer_and_pretrained_loading
  • clean_code
  • readme
  • issue127
  • generalized_action_dicts
  • ppo_num_dialogues
  • crossowoz_ddpt
  • issue_114
  • robust_masking_feature
  • scgpt_exp
  • e2e-soloist
  • convlab_exp
  • change_system_act_in_env
  • pre-training
  • nlg-scgpt
  • remapping_actions
  • soloist
20 results

run_kvret_fewshot.sh

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    run_kvret_fewshot.sh 3.04 KiB
    n_gpus=1
    task_name="kvret"
    dataset_name="kvret"
    speaker="system"
    ratio=$1
    dial_ids_order=$2
    data_dir="data/${task_name}/${dataset_name}_${ratio}_order${dial_ids_order}"
    output_dir="output/${task_name}/${dataset_name}_${ratio}_order${dial_ids_order}"
    cache_dir="../cache"
    logging_dir="${output_dir}/runs"
    train_file="${data_dir}/train.json"
    validation_file="${data_dir}/validation.json"
    test_file="${data_dir}/test.json"
    metric_name_or_path="../nlg/nlg_metric.py"
    metric_for_best_model="bleu"
    source_column="context+db"
    target_column="response"
    truncation_side="left"
    max_source_length=1024
    max_target_length=512
    model_name_or_path="t5-small"
    per_device_train_batch_size=32
    per_device_eval_batch_size=64
    gradient_accumulation_steps=4
    lr=1e-3
    num_train_epochs=100
    
    python create_data_key2gen.py -t ${task_name} -d ${dataset_name} -r ${ratio} -o ${dial_ids_order}
    
    python ../run_seq2seq.py \
        --task_name ${task_name} \
        --train_file ${train_file} \
        --validation_file ${validation_file} \
        --source_column ${source_column} \
        --target_column ${target_column} \
        --max_source_length ${max_source_length} \
        --max_target_length ${max_target_length} \
        --truncation_side ${truncation_side} \
        --model_name_or_path ${model_name_or_path} \
        --do_train \
        --do_eval \
        --save_strategy epoch \
        --evaluation_strategy epoch \
        --save_total_limit 1 \
        --prediction_loss_only \
        --load_best_model_at_end \
        --cache_dir ${cache_dir} \
        --output_dir ${output_dir} \
        --logging_dir ${logging_dir} \
        --overwrite_output_dir \
        --preprocessing_num_workers 4 \
        --per_device_train_batch_size ${per_device_train_batch_size} \
        --per_device_eval_batch_size ${per_device_eval_batch_size} \
        --gradient_accumulation_steps ${gradient_accumulation_steps} \
        --learning_rate ${lr} \
        --num_train_epochs ${num_train_epochs} \
        --adafactor \
        --gradient_checkpointing
    
    python ../run_seq2seq.py \
        --task_name ${task_name} \
        --test_file ${test_file} \
        --source_column ${source_column} \
        --target_column ${target_column} \
        --max_source_length ${max_source_length} \
        --max_target_length ${max_target_length} \
        --truncation_side ${truncation_side} \
        --model_name_or_path ${output_dir} \
        --do_predict \
        --predict_with_generate \
        --metric_name_or_path ${metric_name_or_path} \
        --cache_dir ${cache_dir} \
        --output_dir ${output_dir} \
        --logging_dir ${logging_dir} \
        --overwrite_output_dir \
        --preprocessing_num_workers 4 \
        --per_device_train_batch_size ${per_device_train_batch_size} \
        --per_device_eval_batch_size ${per_device_eval_batch_size} \
        --gradient_accumulation_steps ${gradient_accumulation_steps} \
        --learning_rate ${lr} \
        --num_train_epochs ${num_train_epochs} \
        --adafactor \
        --gradient_checkpointing
    
    # python ../nlg/merge_predict_res.py -d ${dataset_name} -s ${speaker} -c ${context_window_size} -p ${output_dir}/generated_predictions.json
    
    # python ../../../nlg/evaluate_unified_datasets.py -p ${output_dir}/predictions.json --dataset_name ${dataset_name}