Select Git revision
run_kvret_fewshot.sh
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
run_kvret_fewshot.sh 3.04 KiB
n_gpus=1
task_name="kvret"
dataset_name="kvret"
speaker="system"
ratio=$1
dial_ids_order=$2
data_dir="data/${task_name}/${dataset_name}_${ratio}_order${dial_ids_order}"
output_dir="output/${task_name}/${dataset_name}_${ratio}_order${dial_ids_order}"
cache_dir="../cache"
logging_dir="${output_dir}/runs"
train_file="${data_dir}/train.json"
validation_file="${data_dir}/validation.json"
test_file="${data_dir}/test.json"
metric_name_or_path="../nlg/nlg_metric.py"
metric_for_best_model="bleu"
source_column="context+db"
target_column="response"
truncation_side="left"
max_source_length=1024
max_target_length=512
model_name_or_path="t5-small"
per_device_train_batch_size=32
per_device_eval_batch_size=64
gradient_accumulation_steps=4
lr=1e-3
num_train_epochs=100
python create_data_key2gen.py -t ${task_name} -d ${dataset_name} -r ${ratio} -o ${dial_ids_order}
python ../run_seq2seq.py \
--task_name ${task_name} \
--train_file ${train_file} \
--validation_file ${validation_file} \
--source_column ${source_column} \
--target_column ${target_column} \
--max_source_length ${max_source_length} \
--max_target_length ${max_target_length} \
--truncation_side ${truncation_side} \
--model_name_or_path ${model_name_or_path} \
--do_train \
--do_eval \
--save_strategy epoch \
--evaluation_strategy epoch \
--save_total_limit 1 \
--prediction_loss_only \
--load_best_model_at_end \
--cache_dir ${cache_dir} \
--output_dir ${output_dir} \
--logging_dir ${logging_dir} \
--overwrite_output_dir \
--preprocessing_num_workers 4 \
--per_device_train_batch_size ${per_device_train_batch_size} \
--per_device_eval_batch_size ${per_device_eval_batch_size} \
--gradient_accumulation_steps ${gradient_accumulation_steps} \
--learning_rate ${lr} \
--num_train_epochs ${num_train_epochs} \
--adafactor \
--gradient_checkpointing
python ../run_seq2seq.py \
--task_name ${task_name} \
--test_file ${test_file} \
--source_column ${source_column} \
--target_column ${target_column} \
--max_source_length ${max_source_length} \
--max_target_length ${max_target_length} \
--truncation_side ${truncation_side} \
--model_name_or_path ${output_dir} \
--do_predict \
--predict_with_generate \
--metric_name_or_path ${metric_name_or_path} \
--cache_dir ${cache_dir} \
--output_dir ${output_dir} \
--logging_dir ${logging_dir} \
--overwrite_output_dir \
--preprocessing_num_workers 4 \
--per_device_train_batch_size ${per_device_train_batch_size} \
--per_device_eval_batch_size ${per_device_eval_batch_size} \
--gradient_accumulation_steps ${gradient_accumulation_steps} \
--learning_rate ${lr} \
--num_train_epochs ${num_train_epochs} \
--adafactor \
--gradient_checkpointing
# python ../nlg/merge_predict_res.py -d ${dataset_name} -s ${speaker} -c ${context_window_size} -p ${output_dir}/generated_predictions.json
# python ../../../nlg/evaluate_unified_datasets.py -p ${output_dir}/predictions.json --dataset_name ${dataset_name}