Select Git revision
create_data.py
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
create_data.py 5.51 KiB
import os
import json
from tqdm import tqdm
from convlab2.util import load_dataset, load_nlu_data, load_dst_data, load_policy_data, load_nlg_data, load_e2e_data, load_rg_data
from nltk.tokenize import TreebankWordTokenizer, PunktSentenceTokenizer
from collections import Counter
def create_bio_data(dataset, data_dir):
data_by_split = load_nlu_data(dataset, speaker='all')
os.makedirs(data_dir, exist_ok=True)
sent_tokenizer = PunktSentenceTokenizer()
word_tokenizer = TreebankWordTokenizer()
data_splits = data_by_split.keys()
cnt = Counter()
for data_split in data_splits:
data = []
for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False):
utterance = sample['utterance']
dialogue_acts = [da for da in sample['dialogue_acts']['non-categorical'] if 'start' in da]
cnt[len(dialogue_acts)] += 1
sentences = sent_tokenizer.tokenize(utterance)
sent_spans = sent_tokenizer.span_tokenize(utterance)
tokens = [token for sent in sentences for token in word_tokenizer.tokenize(sent)]
token_spans = [(sent_span[0]+token_span[0], sent_span[0]+token_span[1]) for sent, sent_span in zip(sentences, sent_spans) for token_span in word_tokenizer.span_tokenize(sent)]
labels = ['O'] * len(tokens)
for da in dialogue_acts:
char_start = da['start']
char_end = da['end']
word_start, word_end = -1, -1
for i, token_span in enumerate(token_spans):
if char_start == token_span[0]:
word_start = i
if char_end == token_span[1]:
word_end = i + 1
if word_start == -1 and word_end == -1:
# char span does not match word, skip
continue
labels[word_start] = 'B'
for i in range(word_start+1, word_end):
labels[i] = "I"
data.append(json.dumps({'tokens': tokens, 'labels': labels}, ensure_ascii=False)+'\n')
file_name = os.path.join(data_dir, f"{data_split}.json")
with open(file_name, "w", encoding='utf-8') as f:
f.writelines(data)
print('num of spans in utterances', cnt)
def create_dialogBIO_data(dataset, data_dir):
data_by_split = load_nlu_data(dataset, split_to_turn=False)
os.makedirs(data_dir, exist_ok=True)
sent_tokenizer = PunktSentenceTokenizer()
word_tokenizer = TreebankWordTokenizer()
data_splits = data_by_split.keys()
cnt = Counter()
for data_split in data_splits:
data = []
for dialog in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False):
all_tokens, all_labels = [], []
for sample in dialog['turns']:
speaker = sample['speaker']
utterance = sample['utterance']
dialogue_acts = [da for da in sample['dialogue_acts']['non-categorical'] if 'start' in da]
cnt[len(dialogue_acts)] += 1
sentences = sent_tokenizer.tokenize(utterance)
sent_spans = sent_tokenizer.span_tokenize(utterance)
tokens = [token for sent in sentences for token in word_tokenizer.tokenize(sent)]
token_spans = [(sent_span[0]+token_span[0], sent_span[0]+token_span[1]) for sent, sent_span in zip(sentences, sent_spans) for token_span in word_tokenizer.span_tokenize(sent)]
labels = ['O'] * len(tokens)
for da in dialogue_acts:
char_start = da['start']
char_end = da['end']
word_start, word_end = -1, -1
for i, token_span in enumerate(token_spans):
if char_start == token_span[0]:
word_start = i
if char_end == token_span[1]:
word_end = i + 1
if word_start == -1 and word_end == -1:
# char span does not match word, skip
continue
labels[word_start] = 'B'
for i in range(word_start+1, word_end):
labels[i] = "I"
all_tokens.extend([speaker, ':']+tokens)
all_labels.extend(['O', 'O']+labels)
data.append(json.dumps({'tokens': all_tokens, 'labels': all_labels}, ensure_ascii=False)+'\n')
file_name = os.path.join(data_dir, f"{data_split}.json")
with open(file_name, "w", encoding='utf-8') as f:
f.writelines(data)
print('num of spans in utterances', cnt)
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser(description="create data for seq2seq training")
parser.add_argument('--tasks', metavar='task_name', nargs='*', choices=['bio', 'dialogBIO'], help='names of tasks')
parser.add_argument('--datasets', metavar='dataset_name', nargs='*', help='names of unified datasets')
parser.add_argument('--save_dir', metavar='save_directory', type=str, default='data', help='directory to save the data, default: data/$task_name/$dataset_name')
args = parser.parse_args()
print(args)
for dataset_name in tqdm(args.datasets, desc='datasets'):
dataset = load_dataset(dataset_name)
for task_name in tqdm(args.tasks, desc='tasks', leave=False):
data_dir = os.path.join(args.save_dir, task_name, dataset_name)
eval(f"create_{task_name}_data")(dataset, data_dir)