Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sybil
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
general
ccb
sybil
Commits
607d06be
Commit
607d06be
authored
10 years ago
by
Claus Jonathan Fritzemeier
Browse files
Options
Downloads
Patches
Plain Diff
tidy up
parent
3a66153f
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
inst/doc/sybil.R
+0
-565
0 additions, 565 deletions
inst/doc/sybil.R
inst/doc/sybil.Rnw
+0
-1494
0 additions, 1494 deletions
inst/doc/sybil.Rnw
with
0 additions
and
2059 deletions
inst/doc/sybil.R
deleted
100644 → 0
+
0
−
565
View file @
3a66153f
### R code from vignette source 'sybil.Rnw'
### Encoding: UTF-8
###################################################
### code chunk number 1: sybil.Rnw:433-434
###################################################
library
(
sybil
)
###################################################
### code chunk number 2: sybil.Rnw:443-444
###################################################
library
(
help
=
"sybil"
)
###################################################
### code chunk number 3: sybil.Rnw:448-449
###################################################
help
(
doubleGeneDel
)
###################################################
### code chunk number 4: sybil.Rnw:453-454
###################################################
help.search
(
"flux variability analysis"
)
###################################################
### code chunk number 5: sybil.Rnw:457-458 (eval = FALSE)
###################################################
## vignette("sybil")
###################################################
### code chunk number 6: sybil.Rnw:479-480
###################################################
mp
<-
system.file
(
package
=
"sybil"
,
"extdata"
)
###################################################
### code chunk number 7: sybil.Rnw:483-484
###################################################
mod
<-
readTSVmod
(
prefix
=
"Ec_core"
,
fpath
=
mp
,
quoteChar
=
"\""
)
###################################################
### code chunk number 8: sybil.Rnw:504-505 (eval = FALSE)
###################################################
## modelorg2tsv(mod, prefix = "Ec_core")
###################################################
### code chunk number 9: sybil.Rnw:510-511
###################################################
data
(
Ec_core
)
###################################################
### code chunk number 10: sybil.Rnw:524-525
###################################################
ex
<-
findExchReact
(
Ec_core
)
###################################################
### code chunk number 11: sybil.Rnw:528-530
###################################################
upt
<-
uptReact
(
ex
)
ex
[
upt
]
###################################################
### code chunk number 12: sybil.Rnw:536-538
###################################################
mod
<-
changeBounds
(
Ec_core
,
ex
[
c
(
"EX_glc(e)"
,
"EX_lac_D(e)"
)],
lb
=
c
(
0
,
-10
))
findExchReact
(
mod
)
###################################################
### code chunk number 13: sybil.Rnw:557-558
###################################################
optL
<-
optimizeProb
(
Ec_core
,
algorithm
=
"fba"
,
retOptSol
=
FALSE
)
###################################################
### code chunk number 14: sybil.Rnw:563-564
###################################################
opt
<-
optimizeProb
(
Ec_core
,
algorithm
=
"fba"
,
retOptSol
=
TRUE
)
###################################################
### code chunk number 15: sybil.Rnw:570-571
###################################################
lp_obj
(
opt
)
###################################################
### code chunk number 16: sybil.Rnw:575-576
###################################################
checkOptSol
(
opt
)
###################################################
### code chunk number 17: sybil.Rnw:590-591
###################################################
fba
<-
optimizeProb
(
Ec_core
,
algorithm
=
"fba"
)
###################################################
### code chunk number 18: sybil.Rnw:594-595
###################################################
mod_obj
(
fba
)
###################################################
### code chunk number 19: sybil.Rnw:599-600
###################################################
mtf
<-
optimizeProb
(
Ec_core
,
algorithm
=
"mtf"
,
wtobj
=
mod_obj
(
fba
))
###################################################
### code chunk number 20: sybil.Rnw:603-604
###################################################
lp_obj
(
mtf
)
###################################################
### code chunk number 21: sybil.Rnw:609-611
###################################################
nvar
(
fluxdist
(
fba
))
nvar
(
fluxdist
(
mtf
))
###################################################
### code chunk number 22: sybil.Rnw:616-618
###################################################
help
(
"sysBiolAlg_fba-class"
)
help
(
"sysBiolAlg_mtf-class"
)
###################################################
### code chunk number 23: sybil.Rnw:621-623
###################################################
?
fba
?
mtf
###################################################
### code chunk number 24: sybil.Rnw:628-630
###################################################
fl
<-
getFluxDist
(
mtf
)
length
(
fl
)
###################################################
### code chunk number 25: sybil.Rnw:635-637
###################################################
fd
<-
getFluxDist
(
mtf
,
ex
)
getNetFlux
(
fd
)
###################################################
### code chunk number 26: sybil.Rnw:642-643
###################################################
mod_obj
(
mtf
)
###################################################
### code chunk number 27: sybil.Rnw:654-655
###################################################
ko
<-
optimizeProb
(
Ec_core
,
gene
=
"b2276"
,
lb
=
0
,
ub
=
0
)
###################################################
### code chunk number 28: sybil.Rnw:676-678
###################################################
ko
<-
optimizeProb
(
Ec_core
,
gene
=
"b2276"
,
lb
=
0
,
ub
=
0
,
algorithm
=
"lmoma"
,
wtflux
=
getFluxDist
(
mtf
))
###################################################
### code chunk number 29: sybil.Rnw:694-697 (eval = FALSE)
###################################################
## ko <- optimizeProb(Ec_core, gene = "b2276", lb = 0, ub = 0,
## algorithm = "room", wtflux = getFluxDist(mtf),
## solverParm = list(PRESOLVE = GLP_ON))
###################################################
### code chunk number 30: sybil.Rnw:729-730
###################################################
opt
<-
oneGeneDel
(
Ec_core
)
###################################################
### code chunk number 31: sybil.Rnw:744-745
###################################################
checkOptSol
(
opt
)
###################################################
### code chunk number 32: sybil.Rnw:749-750
###################################################
plot
(
opt
,
nint
=
20
)
###################################################
### code chunk number 33: sybil.Rnw:756-759
###################################################
opt
<-
oneGeneDel
(
Ec_core
,
algorithm
=
"lmoma"
,
wtflux
=
getFluxDist
(
mtf
))
checkOptSol
(
opt
)
plot
(
opt
,
nint
=
20
)
###################################################
### code chunk number 34: sybil.Rnw:765-766
###################################################
opt
<-
geneDeletion
(
Ec_core
)
###################################################
### code chunk number 35: sybil.Rnw:769-771 (eval = FALSE)
###################################################
## opt2 <- geneDeletion(Ec_core, combinations = 2)
## opt3 <- geneDeletion(Ec_core, combinations = 3)
###################################################
### code chunk number 36: sybil.Rnw:787-789
###################################################
opt
<-
fluxVar
(
Ec_core
,
percentage
=
80
,
verboseMode
=
0
)
plot
(
opt
)
###################################################
### code chunk number 37: sybil.Rnw:817-819
###################################################
opt
<-
robAna
(
Ec_core
,
ctrlreact
=
"EX_o2(e)"
,
verboseMode
=
0
)
plot
(
opt
)
###################################################
### code chunk number 38: sybil.Rnw:836-843
###################################################
Ec_core_wo_glc
<-
changeUptake
(
Ec_core
,
off
=
"glc_D[e]"
)
opt
<-
phpp
(
Ec_core_wo_glc
,
ctrlreact
=
c
(
"EX_succ(e)"
,
"EX_o2(e)"
),
redCosts
=
TRUE
,
numP
=
25
,
verboseMode
=
0
)
plot
(
opt
)
###################################################
### code chunk number 39: phpp_rf
###################################################
plot
(
opt
,
"EX_succ(e)"
)
###################################################
### code chunk number 40: phpp_rs
###################################################
plot
(
opt
,
"EX_o2(e)"
)
###################################################
### code chunk number 41: sybil.Rnw:877-878
###################################################
opt
<-
oneGeneDel
(
Ec_core
,
algorithm
=
"fba"
,
fld
=
"all"
)
###################################################
### code chunk number 42: sybil.Rnw:881-882
###################################################
sum
<-
summaryOptsol
(
opt
,
Ec_core
)
###################################################
### code chunk number 43: sybil.Rnw:896-897
###################################################
printExchange
(
sum
,
j
=
c
(
1
:
50
),
dense
=
TRUE
)
###################################################
### code chunk number 44: sybil.Rnw:912-916
###################################################
ref
<-
optimizeProb
(
Ec_core
)
opt
<-
oneGeneDel
(
Ec_core
)
let
<-
lethal
(
opt
,
wt
=
mod_obj
(
ref
))
nletid
<-
c
(
1
:
length
(
allGenes
(
Ec_core
)))[
!
let
]
###################################################
### code chunk number 45: sybil.Rnw:925-926 (eval = FALSE)
###################################################
## gmat <- combn(nletid, 3)
###################################################
### code chunk number 46: sybil.Rnw:931-932 (eval = FALSE)
###################################################
## opt <- multiDel(Ec_core, nProc = 4, todo = "geneDeletion", del1 = gmat)
###################################################
### code chunk number 47: sybil.Rnw:943-944 (eval = FALSE)
###################################################
## mapply(checkOptSol, opt)
###################################################
### code chunk number 48: sybil.Rnw:955-957
###################################################
opt
<-
optimizeProb
(
Ec_core
,
poCmd
=
list
(
"getRedCosts"
))
postProc
(
opt
)
###################################################
### code chunk number 49: sybil.Rnw:993-994 (eval = FALSE)
###################################################
## optimizeProb(Ec_core, method = "exact")
###################################################
### code chunk number 50: sybil.Rnw:997-998 (eval = FALSE)
###################################################
## optimizeProb(Ec_core, solver = "cplexAPI", method = "dualopt")
###################################################
### code chunk number 51: sybil.Rnw:1021-1024 (eval = FALSE)
###################################################
## opt <- oneGeneDel(Ec_core,
## solverParm = list(TM_LIM = 1000,
## PRESOLVE = GLP_ON))
###################################################
### code chunk number 52: sybil.Rnw:1037-1041 (eval = FALSE)
###################################################
## opt <- optimizeProb(Ec_core,
## solverParm = list(CPX_PARAM_SCRIND = CPX_ON,
## CPX_PARAM_EPRHS = 1E-09),
## solver = "cplexAPI")
###################################################
### code chunk number 53: sybil.Rnw:1060-1064 (eval = FALSE)
###################################################
## opt <- optimizeProb(Ec_core,
## solverParm = list(verbose = "full",
## timeout = 10),
## solver = "lpSolveAPI")
###################################################
### code chunk number 54: sybil.Rnw:1078-1079
###################################################
help
(
SYBIL_SETTINGS
)
###################################################
### code chunk number 55: sybil.Rnw:1101-1102 (eval = FALSE)
###################################################
## SYBIL_SETTINGS("parameter name", value)
###################################################
### code chunk number 56: sybil.Rnw:1107-1108 (eval = FALSE)
###################################################
## SYBIL_SETTINGS("parameter name")
###################################################
### code chunk number 57: sybil.Rnw:1113-1114 (eval = FALSE)
###################################################
## SYBIL_SETTINGS()
###################################################
### code chunk number 58: sybil.Rnw:1129-1130
###################################################
SYBIL_SETTINGS
(
"SOLVER"
,
"cplexAPI"
,
loadPackage
=
FALSE
)
###################################################
### code chunk number 59: sybil.Rnw:1136-1137
###################################################
SYBIL_SETTINGS
(
"METHOD"
)
###################################################
### code chunk number 60: sybil.Rnw:1140-1141
###################################################
SYBIL_SETTINGS
(
"SOLVER"
,
"glpkAPI"
)
###################################################
### code chunk number 61: sybil.Rnw:1144-1145
###################################################
SYBIL_SETTINGS
(
"METHOD"
)
###################################################
### code chunk number 62: sybil.Rnw:1180-1182
###################################################
data
(
Ec_core
)
Ec_core
###################################################
### code chunk number 63: sybil.Rnw:1186-1187
###################################################
help
(
"modelorg"
)
###################################################
### code chunk number 64: sybil.Rnw:1194-1195
###################################################
react_num
(
Ec_core
)
###################################################
### code chunk number 65: sybil.Rnw:1198-1199
###################################################
id
<-
react_id
(
Ec_core
)
###################################################
### code chunk number 66: sybil.Rnw:1202-1203
###################################################
react_id
(
Ec_core
)[
13
]
<-
"biomass"
###################################################
### code chunk number 67: sybil.Rnw:1207-1209
###################################################
cg
<-
gray
(
0
:
8
/
8
)
image
(
S
(
Ec_core
),
col.regions
=
c
(
cg
,
rev
(
cg
)))
###################################################
### code chunk number 68: sybil.Rnw:1222-1223 (eval = FALSE)
###################################################
## mod <- readTSVmod(reactList = "reactionList.txt")
###################################################
### code chunk number 69: sybil.Rnw:1247-1248
###################################################
help
(
"optsol"
)
###################################################
### code chunk number 70: sybil.Rnw:1252-1254
###################################################
os
<-
optimizeProb
(
Ec_core
)
is
(
os
)
###################################################
### code chunk number 71: sybil.Rnw:1257-1258
###################################################
lp_obj
(
os
)
###################################################
### code chunk number 72: sybil.Rnw:1261-1262
###################################################
getFluxDist
(
os
)
###################################################
### code chunk number 73: sybil.Rnw:1307-1308
###################################################
lp
<-
optObj
(
solver
=
"glpkAPI"
,
method
=
"exact"
)
###################################################
### code chunk number 74: sybil.Rnw:1332-1333
###################################################
lp
<-
initProb
(
lp
)
###################################################
### code chunk number 75: sybil.Rnw:1337-1342
###################################################
cm
<-
Matrix
(
c
(
0.5
,
2
,
1
,
1
),
nrow
=
2
)
loadLPprob
(
lp
,
nCols
=
2
,
nRows
=
2
,
mat
=
cm
,
lb
=
c
(
0
,
0
),
ub
=
rep
(
1000
,
2
),
obj
=
c
(
1
,
1
),
rlb
=
c
(
0
,
0
),
rub
=
c
(
4.5
,
9
),
rtype
=
c
(
"U"
,
"U"
),
lpdir
=
"max"
)
###################################################
### code chunk number 76: sybil.Rnw:1347-1348
###################################################
lp
###################################################
### code chunk number 77: sybil.Rnw:1351-1352
###################################################
status
<-
solveLp
(
lp
)
###################################################
### code chunk number 78: sybil.Rnw:1355-1356
###################################################
getMeanReturn
(
code
=
status
,
solver
=
solver
(
lp
))
###################################################
### code chunk number 79: sybil.Rnw:1359-1361
###################################################
status
<-
getSolStat
(
lp
)
getMeanStatus
(
code
=
status
,
solver
=
solver
(
lp
))
###################################################
### code chunk number 80: sybil.Rnw:1365-1367
###################################################
getObjVal
(
lp
)
getFluxDist
(
lp
)
###################################################
### code chunk number 81: sybil.Rnw:1370-1371
###################################################
getRedCosts
(
lp
)
###################################################
### code chunk number 82: sybil.Rnw:1374-1376
###################################################
delProb
(
lp
)
lp
###################################################
### code chunk number 83: sybil.Rnw:1407-1409
###################################################
ec
<-
sysBiolAlg
(
Ec_core
,
algorithm
=
"fba"
)
is
(
ec
)
###################################################
### code chunk number 84: sybil.Rnw:1414-1415
###################################################
opt
<-
optimizeProb
(
ec
)
###################################################
### code chunk number 85: sybil.Rnw:1422-1425
###################################################
ecr
<-
sysBiolAlg
(
Ec_core
,
algorithm
=
"room"
,
wtflux
=
opt
$
fluxes
)
is
(
ecr
)
ecr
###################################################
### code chunk number 86: sybil.Rnw:1474-1475 (eval = FALSE)
###################################################
## promptSysBiolAlg(algorithm = "foo")
This diff is collapsed.
Click to expand it.
inst/doc/sybil.Rnw
deleted
100644 → 0
+
0
−
1494
View file @
3a66153f
\documentclass
[a4paper,headings=small,captions=tableheading]
{
scrartcl
}
\usepackage
[english]
{
babel
}
\usepackage
[T1]
{
fontenc
}
\usepackage
[utf8]
{
inputenc
}
\usepackage
{
textcomp,lmodern
}
\typearea
[current]
{
last
}
\usepackage
{
fixltx2e,mparhack,mathdots
}
\usepackage
{
xspace
}
\usepackage
{
paralist
}
\usepackage
{
footmisc
}
\usepackage
{
booktabs
}
\usepackage
{
natbib
}
\usepackage
{
hyperref
}
\usepackage
{
microtype
}
\newcommand
{
\Comp
}
[1]
{
\texttt
{
#1
}}
\addtolength
{
\skip\footins
}{
0.5
\baselineskip
}
\usepackage
{
fnpos
}
\hypersetup
{
pdftitle =
{
sybil -- Efficient Constrained Based Modelling in R
}
,
pdfauthor =
{
Gabriel Gelius-Dietrich
}
,
pdfsubject =
{
constrained based modelling
}
,
pdfkeywords =
{
Optimization, FBA, MOMA, ROOM
}
,
pdfborder =
{
0 0 0
}
,
pdfhighlight =
{
/N
}
}
% glyphs in pdf figures
\pdfinclusioncopyfonts
=1
\newcommand
{
\pkg
}
[1]
{
\emph
{
#1
}}
\newcommand
{
\pkgname
}{
\pkg
{
sybil
}
\xspace
}
\newcommand
{
\prgname
}
[1]
{
\textsc
{
#1
}}
%\newcommand{\cplex}{IBM\textregistered{} %
% ILOG\textregistered{} CPLEX\textregistered{}%
%}
\newcommand
{
\cplex
}{
IBM ILOG CPLEX
}
\title
{
sybil -- Efficient Constrained Based Modelling in R
}
%\VignetteIndexEntry{sybil -- Efficient Constrained Based Modelling in R}
%\VignettePackage{sybil}
\author
{
Gabriel Gelius-Dietrich
}
% ---------------------------------------------------------------------------- %
% entire document
% ---------------------------------------------------------------------------- %
\begin{document}
\maketitle
\tableofcontents
% ---------------------------------------------------------------------------- %
\section
{
Introduction
}
The R-package
\pkgname
{}
is a Systems Biology Library for R, implementing
algorithms for constraint based analysis of metabolic networks.
Among other functions,
\pkgname
currently provides efficient methods for
flux-balance analysis (FBA), minimization of metabolic adjustment (MOMA),
regulatory on/off minimization (ROOM), flux variability Analysis and robustness
Analysis.
The package
\pkgname
{}
makes use of the sparse matrix implementation in the
R-package
\pkg
{
Matrix
}
.
% ---------------------------------------------------------------------------- %
\section
{
Installation
}
The package
\pkgname
{}
itself depends on an existing installation of the
package
\pkg
{
Matrix
}
. In order to run optimizations, at least one of the
following additional R-packages and the corresponding libraries are required:
\pkg
{
glpkAPI
}
,
\pkg
{
cplexAPI
}
,
\pkg
{
clpAPI
}
or
\pkg
{
lpSolveAPI
}
.
These packages are available from
CRAN
\footnote
{
\url
{
http://cran.r-project.org/
}
\label
{
cranfoot
}}
.
Additionally,
\pkg
{
sybilGUROBI
}
---supporting the Gurobi
optimizer
\footnote
{
\url
{
http://www.gurobi.com
}}
---is available on request.
% ---------------------------------------------------------------------------- %
\section
{
Input files
}
\label
{
inputformats
}
Input files for
\pkgname
are text files containing a description of the
metabolic model to analyze. These descriptions are basically lists of
reactions.
Two fundamentally different types of text files are supported:
\begin{inparaenum}
[i)]
\item
in tabular form (section~
\ref
{
tabmod
}
), or
\item
in SBML format (section~
\ref
{
sbmlmod
}
).
\end{inparaenum}
% ---------------------------------------------------------------------------- %
\subsection
{
Tabular form
}
\label
{
tabmod
}
Models in tabular form can be read using the function
\Comp
{
readTSVmod()
}
and
written using the function
\Comp
{
modelorg2tsv()
}
.
Each metabolic model description consists of three tables:
\begin{enumerate}
\item
A model description, containing a model name, the compartments of the
model and so on (section~
\ref
{
moddesc
}
).
\item
A list of all metabolites (section~
\ref
{
metlist
}
).
\item
A list of all reactions (section~
\ref
{
reactlist
}
).
\end{enumerate}
A model must contain at least a list of all reactions. All other tables are
optional. The tables contain columns storing the required data. Some of these
columns are optional, but if a certain table exists, there must be a minimal set
of columns. The column names (the first line in each file) are used as keywords
and cannot be changed.
% ---------------------------------------------------------------------------- %
\subsubsection
{
Field and entry delimiter
}
\label
{
delim
}
There are two important variables in connection with text based tables: The
fields (columns) of the tables are separated by the value stored in the variable
\Comp
{
fielddelim
}
. If a single entry of a field contains a list of entries,
they are separated by the value of the variable
\Comp
{
entrydelim
}
.
The default values are given table~
\ref
{
delimtab
}
.
\begin{table}
\centering
\caption
{
Field and entry delimiters and their default values.
}
\label
{
delimtab
}
\begin{tabular}
{
cc
}
\toprule
variable
&
default value
\\
\midrule
\Comp
{
fielddelim
}
&
\Comp
{
\textbackslash
t
}
\\
\Comp
{
entrydelim
}
&
\Comp
{
,
\textvisiblespace
}
\\
\bottomrule
\end{tabular}
\end{table}
The default behavior is, that the columns of each table are separated by a
single
\Comp
{
tab
}
character. If a column entry holds more than one entry, they
are separated by a comma followed by a single
whitespace
\Comp
{
\textvisiblespace
}
(not a tab!).
% ---------------------------------------------------------------------------- %
\subsubsection
{
Model description
}
\label
{
moddesc
}
Every column in this table can have at most one entry, meaning each entry will
be a single character string. If a model description file is used, there should
be at least the two columns
\Comp
{
name
}
and
\Comp
{
id
}
. If they are
missing---or if no model description file is used---they will be set to the file
name of the reaction list, which must be there (any file name extension and the
string
\Comp
{
\_
react
}
at the end of the file name, will be removed). The model
description file contains the following fields:
\begin{description}
\item
[name]
A single character string giving the model name. If this field is empty, the
filename of the reaction list is used.
\item
[id]
A single character string giving the model id. If this field is empty, the
filename of the reaction list is used.
\item
[description]
A single character string giving a model description (optional).
\item
[compartment]
A single character string containing the compartment names. The names must be
separated by the value of
\Comp
{
fielddelim
}
(optional, see section~
\ref
{
delim
}
).
\item
[abbreviation]
A single character string containing the compartment abbreviations. The
abbreviations must be in square brackets and separated by the value of
\Comp
{
fielddelim
}
as mentioned above (optional).
\item
[Nmetabolites]
A single integer value giving the number of metabolites in the model (optional).
\item
[Nreactions]
A single integer value giving the number of reactions in the model (optional).
\item
[Ngenes]
A single integer value giving the number of unique, independent genes in the
model (optional).
\item
[Nnnz]
A single integer value giving the number of non-zero elements in the
stoichiometric matrix of the model (optional).
\end{description}
The file
\Comp
{
Ec
\_
core
\_
desc.tsv
}
(in
\Comp
{
extdata/
}
) contains an exemplarily
table for the core energy metabolism of
\emph
{
E.~coli
}
\citep
{
Palsson:2006fk,Orth:2010fk
}
.
% ---------------------------------------------------------------------------- %
\subsubsection
{
Metabolite list
}
\label
{
metlist
}
This table is used in order to match metabolite id's given in the list of
reactions to long metabolite names. This table is optional, but if it is used,
the columns
\Comp
{
abbreviation
}
and
\Comp
{
name
}
should not be empty.
\begin{description}
\item
[abbreviation]
A list of single character strings containing the metabolite abbreviations.
\item
[name]
A list of single character strings containing the metabolite names.
\item
[compartment]
A list of character strings containing the metabolite compartment names. Each
entry can contain more than one compartment name, separated by
\Comp
{
fielddelim
}
(optional, currently unused).
\end{description}
The file
\Comp
{
Ec
\_
core
\_
met.tsv
}
(in
\Comp
{
extdata/
}
) contains an exemplarily
table for the core energy metabolism of
\emph
{
E.~coli
}
\citep
{
Palsson:2006fk,Orth:2010fk
}
.
% ---------------------------------------------------------------------------- %
\subsubsection
{
Reaction list
}
\label
{
reactlist
}
This table contains the reaction equations used in the metabolic network.
\begin{description}
\item
[abbreviation]
A list of single character strings containing the reaction abbreviations
(optional, if empty, a warning will be produced). Entries in the field
abbreviation are used as reaction id's, so they must be unique. If they are
missing, they will be set to
$
v
_
i,
\
i
\in
\{
1
,
\dots
, n
\}\ \forall
i
$
with
$
n
$
being the total number of reactions.
\item
[name]
A list of single character strings containing the reaction names (optional, if
empty, the reaction id's (abbreviations) are used as reaction names.
\item
[equation]
A list of single character strings containing the reaction equation. See
section~
\ref
{
writeEQ
}
for a description of reaction equation strings.
\item
[reversible]
A list of single character strings indicating if a particular reaction is
reversible or not. If the entry is set to
\Comp
{
Reversible
}
or
\Comp
{
TRUE
}
, the
reaction is considered as reversible, otherwise not. If this column is not used,
the arrow symbol of the reaction string is used (optional, see
section~
\ref
{
writeEQ
}
).
\item
[compartment]
A list of character strings containing the compartment names in which the
current reaction takes place. Each entry can contain more than one name,
separated by
\Comp
{
fielddelim
}
(optional, currently unused).
\item
[lowbnd]
A list of numeric values containing the lower bounds of the reaction rates.
If not set, zero is used for an irreversible reaction and the value of
\Comp
{
def
\_
bnd * -1
}
for a reversible reaction. See documentation of the
function
\Comp
{
readTSVmod
}
for the argument
\Comp
{
def
\_
bnd
}
(optional).
\item
[uppbnd]
A list of numeric values containing the upper bounds of the reaction rates.
If not set, the value of
\Comp
{
def
\_
bnd
}
is used. See documentation of the
function
\Comp
{
readTSVmod
}
for the argument
\Comp
{
def
\_
bnd
}
(optional).
\item
[obj\_coef]
A list of numeric values containing objective values for each reaction
(optional, if missing, zero is used).
\item
[rule]
A list of single character strings containing the gene to reaction associations
(optional).
\item
[subsystem]
A list of character strings containing the reaction subsystems. Each reaction
can belong to more than one subsystem. The entries are separated by
\Comp
{
fielddelim
}
(optional).
\end{description}
The file
\Comp
{
Ec
\_
core
\_
react.tsv
}
(in
\Comp
{
extdata/
}
) contains an exemplarily
table for the core energy metabolism of
\emph
{
E.~coli
}
\citep
{
Palsson:2006fk,Orth:2010fk
}
.
% ---------------------------------------------------------------------------- %
\subsubsection
{
How to write a reaction equation string
}
\label
{
writeEQ
}
\begin{figure}
[t]
\centering
\includegraphics
{
net-crop
}
\caption
{
Simple example network. A) showing a closed network, B) an open
network. Capital letters are used as metabolite id's, lower case
letters are used as compartment id's: b: boundary metabolite,
c:~cytosol and e: external metabolite. Internal reactions are named
$
v
_{
1
:
7
}$
, transport reactions
$
b
_{
1
:
3
}$
. Reactions
$
v
_
3
$
and
$
v
_
4
$
are
reversible, all others are irreversible.
Metabolites A
\textsubscript
{
b
}
, C
\textsubscript
{
b
}
and
E
\textsubscript
{
b
}
are boundary metabolites and will be removed in
order to obtain an open network.
}
\label
{
netex
}
\end{figure}
Any reaction string can be written without space. They are not required
but showed here, in order to make the string more human readable.
\paragraph
{
Compartment Flag
}
Each reaction string may start with a compartment
flag in square brackets followed by a colon. The compartment flag here gives the
location of all metabolites appearing in the reaction.
\begin{verbatim}
[c] :
\end{verbatim}
The compartment flag can consist of more than one letter and---if used---must be
an element of the field
\Comp
{
abbreviation
}
in the model description. The letter
\Comp
{
b
}
is reserved for boundary metabolites (argument
\Comp
{
extMetFlag
}
in
function
\Comp
{
readTSVmod()
}
), which can be transported inside the system (those
metabolites are only used in closed systems and will be removed during file
parsing).
If the reaction string does not start with a compartment flag, the flag may be
appended (without whitespace) to each metabolite id (e.
\,
g. for transport
reactions):
\begin{verbatim}
h2o[e] <==> h2o[c]
\end{verbatim}
If no compartment flag is found, it is set to
\Comp
{
[unknown]
}
.
\paragraph
{
Reaction Arrow
}
All reactions must be written in the direction educt to product, so that all
metabolites left of the reaction arrow are considered as educts, all metabolites
on the right of the reaction arrow are products.
The reaction arrow itself consists of one or more
\Comp
{
=
}
or
\Comp
{
-
}
symbols.
The last symbol must be a
\Comp
{
>
}
. If a reaction arrow starts with
\Comp
{
<
}
, it
is taken as reversible, if the field
\Comp
{
reversible
}
in the reaction list is
empty. If the field
\Comp
{
reversible
}
is set to
\Comp
{
TRUE
}
or
\Comp
{
Reversible
}
, the reactions will be treated as a reversible reaction,
independent of the reaction arrow. Each reaction must contain exactly one
reaction arrow.
\paragraph
{
Stoichiometric Coefficients
}
Stoichiometric coefficients must be in round brackets in front of the
corresponding metabolite:
\begin{verbatim}
(2) h[c] + (0.5) o2[c] + q8h2[c] --> h2o[c] + (2) h[e] + q8[c]
\end{verbatim}
Setting the stoichiometric coefficient in brackets makes it possible for the
metabolite id to start with a number.
\paragraph
{
Metabolite Id's
}
The abbreviation of a metabolite name (a metabolite id) must be unique for the model and
must not contain
\Comp
{
+
}
,
\Comp
{
(
}
or
\Comp
{
)
}
characters.
\paragraph
{
Examples
}
A minimal reaction list without compartment flags for figure~
\ref
{
netex
}
B
(open network):
\begin{verbatim}
equation
A --> B
B <==> D
D <==> E
B --> C
--> A
C -->
E -->
\end{verbatim}
The same as above including compartment flags and external metabolites and all
transport reactions for figure~
\ref
{
netex
}
A (closed network). The reactions
which take place in only one compartment (do not include a transport of
metabolites across membranes) have their compartment flag at the beginning
of the line (
\Comp
{
[c]
}
in this example). For transport reactions all
metabolites have their own compartment flag, e.
\,
g. in line 5 metabolite
\Comp
{
A
}
is transported from compartment
\Comp
{
[e]
}
(external) to compartment
\Comp
{
[c]
}
(cytosol):
\begin{verbatim}
equation
[c]: A --> B
[c]: B <==> D
[c]: D <==> E
[c]: B --> C
A[e] --> A[c]
C[c] --> C[e]
E[c] --> E[e]
A[b] --> A[e]
C[e] --> C[b]
E[e] --> E[b]
\end{verbatim}
The same as above including reaction id's for figure~
\ref
{
netex
}
(fields are
separated by tabulators):
\begin{verbatim}
abbreviation equation
v2 [c]: A --> B
v3 [c]: B <==> D
v4 [c]: D <==> E
v6 [c]: B --> C
v1 A[e] --> A[c]
v7 C[c] --> C[e]
v5 E[c] --> E[e]
b1 A[b] --> A[e]
b3 C[e] --> C[b]
b2 E[e] --> E[b]
\end{verbatim}
% ---------------------------------------------------------------------------- %
\subsection
{
SBML
}
\label
{
sbmlmod
}
In order to read model files written in systems biology markup language (SBML),
the package
\pkg
{
sybilSBML
}
is required, which is available from
CRAN
\footnote
{
\url
{
http://CRAN.R-project.org/package=sybilSBML
}
\label
{
sybilhome
}}
.
% ---------------------------------------------------------------------------- %
\section
{
Usage
}
In the following sections, it is assumed, that package
\pkg
{
glpkAPI
}
is
installed additionally to
\pkgname
, thus GLPK is used as optimization software.
Load
\pkgname
{}
in a running R session:
<<>>=
library(sybil)
@
% ---------------------------------------------------------------------------- %
\subsection
{
Documentation
}
Get a list of all functions provided with
\pkgname
:
<<>>=
library(help = "sybil")
@
Get details of the usage of a particular function in
\pkgname
(e.
\,
g.
\Comp
{
doubleGeneDel()
}
):
<<>>=
help(doubleGeneDel)
@
Search through help files for a specific topic
(e.
\,
g. ``flux variability analysis''):
<<>>=
help.search("flux variability analysis")
@
Open this vignette:
<<eval=FALSE>>=
vignette("sybil")
@
% Demo??
% ---------------------------------------------------------------------------- %
\subsection
{
Reading a model in tabular form
}
The package
\pkgname
can read metabolic network models written in tabular form
as described in section~
\ref
{
tabmod
}
. A reconstruction of the central metabolism
of
\emph
{
E. coli
}
\citep
{
Orth:2010fk,Palsson:2006fk
}
is included as an example
dataset. The example dataset consists of three files:
\begin{enumerate}
\item
\Comp
{
Ec
\_
core
\_
desc.tsv
}
containing the model description,
\item
\Comp
{
Ec
\_
core
\_
met.tsv
}
containing the metabolite list and
\item
\Comp
{
Ec
\_
core
\_
react.tsv
}
containing the reaction list.
\end{enumerate}
These files are located in the directory
\Comp
{
extdata/
}
in the package
\pkgname
{}
. The exact location of the files can be retrieved with the
\Comp
{
system.file()
}
command:
<<>>=
mp <- system.file(package = "sybil", "extdata")
@
Now the model files can be read in by using the command
\Comp
{
readTSVmod()
}
:
<<print=true>>=
mod <- readTSVmod(prefix = "Ec
_
core", fpath = mp, quoteChar = "
\"
")
@
If the fields in the input files for function
\Comp
{
readTSVmod()
}
are quoted,
argument
\Comp
{
quoteChar
}
must be used. The value of
\Comp
{
quoteChar
}
is passed
to the argument
\Comp
{
quote
}
of the R~function
\Comp
{
read.table()
}
. Argument
\Comp
{
fpath
}
gets the path to the directory containing the model files. Argument
\Comp
{
prefix
}
can be used, if the file names of the model files end like the
file names used in the above example. All have the same base name
\Comp
{
"Ec
\_
core"
}
which is used for argument
\Comp
{
prefix
}
. Function
\Comp
{
readTSVmod()
}
now assumes, that the model files are named as follows:
\begin{itemize}
\item
the model description file (if exists):
\Comp
{
<prefix>
\_
desc
}
\,
,
\item
the list of metabolites (if exists):
\Comp
{
<prefix>
\_
met
}
and
\item
the list of reactions (must be there):
\Comp
{
<prefix>
\_
react
}
\,
.
\end{itemize}
The file name suffix depends on the field delimiter. If the fields are
tab-delimited, the default is
\Comp
{
.tsv
}
\,
. Function
\Comp
{
readTSVmod()
}
returns an object of class
\Comp
{
modelorg
}
.
Models (instances of class
\Comp
{
modelorg
}
, see section~
\ref
{
classmod
}
) can be
converted to files in tabular form with the command
\Comp
{
modelorg2tsv
}
:
<<eval=FALSE>>=
modelorg2tsv(mod, prefix = "Ec
_
core")
@
This will generate the three files shown in the list above (see also
section~
\ref
{
tabmod
}
).
Load the example dataset included in
\pkgname
.
<<>>=
data(Ec
_
core)
@
The example model is a `ready to use' model, it contains a biomass objective
function and an uptake of glucose
\citep
{
Orth:2010fk,Palsson:2006fk
}
. It is the
same model as used in the text files before.
% ---------------------------------------------------------------------------- %
\subsection
{
Media conditions
}
\label
{
envir
}
The current set of exchange reactions in the model can be accessed with the
function
\Comp
{
findExchReact()
}
.
<<print=true>>=
ex <- findExchReact(Ec
_
core)
@
The subset of uptake reactions can be retrieved by method
\Comp
{
uptReact
}
.
<<print=true>>=
upt <- uptReact(ex)
ex[upt]
@
Function
\Comp
{
findExchReact()
}
returns an object of class
\Comp
{
reactId
\_
Exch
}
(extending class
\Comp
{
reactId
}
) which can be used to alter reaction bounds
with function
\Comp
{
changeBounds()
}
. Make lactate the main carbon source instead
of glucose:
<<>>=
mod <- changeBounds(Ec
_
core, ex[c("EX
_
glc(e)", "EX
_
lac
_
D(e)")], lb = c(0, -10))
findExchReact(mod)
@
% ---------------------------------------------------------------------------- %
\subsection
{
Flux-balance analysis
}
\label
{
fba
}
Perform flux-balance analysis (FBA) by using method
\Comp
{
optimizeProb
}
of class
\Comp
{
modelorg
}
.
Method
\Comp
{
optimizeProb
}
performs flux-balance analysis
\citep
{
Edwards:2002kx,Orth:2010vn
}
. It returns a list containing the return
value of the optimization process (
\Comp
{
"ok"
}
), the solution status
(
\Comp
{
"stat"
}
), the value of the objective function after optimization
(
\Comp
{
"obj"
}
), the resulting flux distribution---the phenotype of the metabolic
network---(
\Comp
{
"fluxes"
}
) and results of pre- and post processing commands, if
given (
\Comp
{
"preP"
}
and
\Comp
{
"postP"
}
). Also, a vector of integers will be
returned (
\Comp
{
"fldind"
}
). The flux value
\Comp
{
fluxes[fldind[i]]
}
is the flux
value of reaction
\Comp
{
i
}
in the model (see section~
\ref
{
mtf
}
).
<<print=true>>=
optL <- optimizeProb(Ec
_
core, algorithm = "fba", retOptSol = FALSE)
@
Perform FBA, return an object of class
\Comp
{
optsol
\_
optimizeProb
}
(extends class
\Comp
{
optsol
}
, see section~
\ref
{
classopt
}
, this is the default
behavior).
<<print=true>>=
opt <- optimizeProb(Ec
_
core, algorithm = "fba", retOptSol = TRUE)
@
The variable
\Comp
{
opt
}
contains an object of class
\Comp
{
optsol
\_
optimizeProb
}
,
a data structure storing all results of the optimization and providing methods
to access the data (see section~
\ref
{
classopt
}
).
Retrieve the value of the objective function after optimization.
<<>>=
lp
_
obj(opt)
@
Translate the return and status codes of the optimization software into human
readable strings.
<<>>=
checkOptSol(opt)
@
% ---------------------------------------------------------------------------- %
\subsection
{
Minimize total flux
}
\label
{
mtf
}
Usually, an FBA solution is not unique. There can be many equivalent flux
distributions supporting the same objective value. A method to decide for one
out of these solutions is to compute the flux distribution minimizing the total
absolute flux (MTF) but still supporting the objective value of the FBA
solution. At first, an objective value, for example calculated via FBA, is
required:
<<>>=
fba <- optimizeProb(Ec
_
core, algorithm = "fba")
@
Get the optimized value of the objective function:
<<>>=
mod
_
obj(fba)
@
Now, the objective value of the solution in
\Comp
{
fba
}
is used to compute a
flux distribution with a minimized total absolute flux:
<<>>=
mtf <- optimizeProb(Ec
_
core, algorithm = "mtf", wtobj = mod
_
obj(fba))
@
The value of the objective function for the MTF algorithm now is
<<>>=
lp
_
obj(mtf)
@
which is the minimized sum of all absolute flux values. The number of variables
of the MTF problem is three times the number of the variables of the FBA
solution
<<>>=
nvar(fluxdist(fba))
nvar(fluxdist(mtf))
@
which is due to the different formulations of the two optimization problems.
Consult the documentation of class
\Comp
{
sysBiolAlg
}
(section~
\ref
{
classsba
}
)
for more detailed information on the algorithms.
<<>>=
help("sysBiolAlg
_
fba-class")
help("sysBiolAlg
_
mtf-class")
@
There are also shortcuts available:
<<>>=
?fba
?mtf
@
Method
\Comp
{
getFluxDist
}
can be used to get the flux distribution of the MTF
solution; the values of the variables corresponding to the reactions in the
metabolic network.
<<>>=
fl <- getFluxDist(mtf)
length(fl)
@
The flux distribution of the exchange reactions can be retrieved in a similar
way (variable
\Comp
{
ex
}
contains the exchange reactions of the
\emph
{
E. coli
}
model, see section~
\ref
{
envir
}
).
<<print=true>>=
fd <- getFluxDist(mtf, ex)
getNetFlux(fd)
@
Function
\Comp
{
getNetFlux()
}
the absolute flux values of the exchange reactions
grouped by flux direction. The value of the objective function given in the
model (here: biomass production) can be accessed by method
\Comp
{
mod
\_
obj
}
:
<<>>=
mod
_
obj(mtf)
@
which is of course the same value as for the FBA algorithm.
% ---------------------------------------------------------------------------- %
\subsection
{
Genetic perturbations
}
\label
{
komut
}
To compute the metabolic phenotypes of
\emph
{
in silico
}
knock-out mutants,
argument
\Comp
{
gene
}
of method
\Comp
{
optimizeProb
}
can be used.
<<print=true>>=
ko <- optimizeProb(Ec
_
core, gene = "b2276", lb = 0, ub = 0)
@
Argument
\Comp
{
gene
}
gets a character vector of gene locus tags present in the
used model. The flux boundaries of reactions affected by the genes given in
argument
\Comp
{
gene
}
will be set to the values of arguments
\Comp
{
lb
}
and
\Comp
{
ub
}
. If both arguments are set to zero, no flux through the affected
reactions is allowed.
% ---------------------------------------------------------------------------- %
\subsubsection
{
Minimization of metabolic adjustment (MOMA)
}
\label
{
MOMA
}
The default algorithm used by method
\Comp
{
optimizeProb
}
is
FBA
\citep
{
Edwards:2002kx,Orth:2010vn
}
, implying the assumption, that the
phenotype of the mutant metabolic network is independent of the wild-type
phenotype. An alternative is the MOMA algorithm described in
\citet
{
Segre:2002fk
}
minimizing the hamiltonian distance of the wild-type
phenotype and the mutant phenotype (argument
\Comp
{
algorithm = "lmoma"
}
computes
a linearized version of the MOMA algorithm;
\Comp
{
algorithm = "moma"
}
runs the
quadratic formulation).
<<print=true>>=
ko <- optimizeProb(Ec
_
core, gene = "b2276", lb = 0, ub = 0,
algorithm = "lmoma", wtflux = getFluxDist(mtf))
@
The variable
\Comp
{
ko
}
contains the solution of the linearized version of the
MOMA algorithm. A wild-type flux distribution can be set via argument
\Comp
{
wtflux
}
, here, the flux distribution computed through the MTF algorithm
was used. If argument
\Comp
{
wtflux
}
is not set, a flux distribution based on
FBA will be used.
% ---------------------------------------------------------------------------- %
\subsubsection
{
Regulatory on/off minimization (ROOM)
}
\label
{
ROOM
}
Another alternative is the ROOM algorithm (regulatory on/off minimization)
described in
\citet
{
Shlomi:2005fk
}
. Set argument
\Comp
{
algorithm
}
to
\Comp
{
room
}
in order to run ROOM.
<<eval=FALSE>>=
ko <- optimizeProb(Ec
_
core, gene = "b2276", lb = 0, ub = 0,
algorithm = "room", wtflux = getFluxDist(mtf),
solverParm = list(PRESOLVE = GLP
_
ON))
@
ROOM is a mixed integer programming problem which requires for GLPK to switch
on the pre-solver. See section
\ref
{
optparm
}
for more information on setting
parameters to the mathematical programming software.
% ---------------------------------------------------------------------------- %
\subsubsection
{
Multiple knock-outs
}
\label
{
multknockout
}
Method
\Comp
{
optimizeProb
}
can be used to study the metabolic phenotype of one
knock-out mutant. The purpose of functions
\Comp
{
oneGeneDel()
}
,
\Comp
{
doubleGeneDel()
}
and
\Comp
{
geneDeletion()
}
is the simulation of multiple
\emph
{
in silico
}
knock-outs (see table~
\ref
{
tabmultko
}
).
\begin{table}
\centering
\caption
{
Functions used to simulate multiple
\emph
{
in silico
}
knock-out mutants.
}
\label
{
tabmultko
}
\begin{tabular}
{
ll
}
\toprule
function
&
purpose
\\
\midrule
\Comp
{
oneGeneDel()
}
&
single gene knock-outs
\\
\Comp
{
doubleGeneDel()
}
&
pairwise gene knock-outs
\\
\Comp
{
geneDeletion()
}
&
simultaneous deletion of
$
n
$
genes
\\
\bottomrule
\end{tabular}
\end{table}
Function
\Comp
{
oneGeneDel()
}
simulates all possible single gene knock-out
mutants in a metabolic model (default algorithm is FBA).
<<print=true>>=
opt <- oneGeneDel(Ec
_
core)
@
The function
\Comp
{
oneGeneDel
}
gets an argument
\Comp
{
geneList
}
, a character
vector containing the gene id's to knock out. If
\Comp
{
geneList
}
is missing,
all genes are taken into account. The example model contains 137 independent
genes, so 137 optimizations will be performed.
The result stored in the variable
\Comp
{
opt
}
is an object of class
\Comp
{
optsol
\_
geneDel
}
, extending class
\Comp
{
optsol
\_
optimizeProb
}
(see section~
\ref
{
fba
}
). Method
\Comp
{
checkOptSol
}
gives an overview about the
results and status of the optimizations. Additionally, class
\Comp
{
optsol
}
contains a method
\Comp
{
plot
}
, plotting a histogram of the values of the
objective function given in the model after optimization
(section~
\ref
{
classopt
}
).
<<>>=
checkOptSol(opt)
@
Plot the histogram:
\begin{center}
<<fig=TRUE>>=
plot(opt, nint = 20)
@
\end{center}
Argument
\Comp
{
algorithm
}
can be used here to use MOMA to compute the mutant
flux distributions. Additionally, a wild-type solution can be provided.
\begin{center}
<<fig=TRUE>>=
opt <- oneGeneDel(Ec
_
core, algorithm = "lmoma", wtflux = getFluxDist(mtf))
checkOptSol(opt)
plot(opt, nint = 20)
@
\end{center}
In order to perform all possible double-knock-out mutants, or
$
n
$
-knock-out
mutants, the function
\Comp
{
geneDeletion
}
can be used. Perform single gene
deletions (in principle the same as before with
\Comp
{
oneGeneDel
}
).
<<>>=
opt <- geneDeletion(Ec
_
core)
@
Compute all double-knock-out mutants and all triple-knock-out mutants
<<eval=FALSE>>=
opt2 <- geneDeletion(Ec
_
core, combinations = 2)
opt3 <- geneDeletion(Ec
_
core, combinations = 3)
@
which will result in 9317 optimizations for double-knock-outs and
419
\,
221~Optimizations for triple-knock-outs using the metabolic model of the
core energy metabolism of
\emph
{
E.
\,
coli
}
. This model contains 137 genes.
% ---------------------------------------------------------------------------- %
\subsection
{
Flux variability analysis
}
The function
\Comp
{
fluxVar
}
performs a flux variability analysis with a given
model
\citep
{
Mahadevan:2003fk
}
. The minimum and maximum flux values for each
reaction in the model are calculated, which still support a certain percentage
of a given optimal functional state
$
Z
_{
\mathrm
{
opt
}}$
.
\begin{center}
<<fig=TRUE>>=
opt <- fluxVar(Ec
_
core, percentage = 80, verboseMode = 0)
plot(opt)
@
\end{center}
% The example below is based upon the metabolic model of the human red blood cell
% by \citet{Palsson:2006fk} and \citet{Price:2004fk}.
% <<>>=
% rbc <- readTSVmod(reactList = "rbc.tsv", fpath = mp, quoteChar = "\"")
% @
% Perform flux variability analysis.
% \begin{center}
% <<fig=TRUE>>=
% opt <- fluxVar(Ec_core, percentage = 1, verboseMode = 0)
% plot(opt)
% @
% \end{center}
% ---------------------------------------------------------------------------- %
\subsection
{
Robustness analysis
}
The function
\Comp
{
robAna
}
performs a robustness analysis with a given model.
The flux of a control reaction will be varied stepwise between the maximum and
minimum value the flux of the control reaction can reach
\citep
{
Palsson:2006fk
}
.
The example below shows a flux variability analysis based upon the metabolic
model of the core energy metabolism of
\emph
{
E.
\,
coli
}
using the exchange flux
of oxygen as control reaction.
\begin{center}
<<fig=TRUE>>=
opt <- robAna(Ec
_
core, ctrlreact = "EX
_
o2(e)", verboseMode = 0)
plot(opt)
@
\end{center}
% ---------------------------------------------------------------------------- %
\subsection
{
Phenotypic phase plane analysis
}
The function
\Comp
{
phpp
}
performs a phenotypic phase plane
analysis
\citep
{
Edwards:2001fk,Edwards:2002uq
}
with a given model. The flux of
two control reactions will be varied stepwise between a given maximum and
minimum value. The example below shows a phenotypic phase plane analysis based
upon the metabolic model of the core energy metabolism of
\emph
{
E.
\,
coli
}
using
the exchange fluxes of oxygen and succinate as control reactions. First, the
uptake of glucose is switched off.
\begin{center}
<<fig=TRUE>>=
Ec
_
core
_
wo
_
glc <- changeUptake(Ec
_
core, off = "glc
_
D[e]")
opt <- phpp(Ec
_
core
_
wo
_
glc,
ctrlreact = c("EX
_
succ(e)", "EX
_
o2(e)"),
redCosts = TRUE,
numP = 25,
verboseMode = 0)
plot(opt)
@
\end{center}
Plot reduced costs of succinate import flux and oxygen import flux.
<<fig=TRUE, label=phpp
_
rf, include=FALSE>>=
plot(opt, "EX
_
succ(e)")
@
<<fig=TRUE,label=phpp
_
rs, include=FALSE>>=
plot(opt, "EX
_
o2(e)")
@
\begin{minipage}
{
0.45
\textwidth
}
\begin{center}
\includegraphics
[width=\textwidth]
{
sybil-phpp
_
rf
}
\end{center}
\end{minipage}
\hfill
\begin{minipage}
{
0.45
\textwidth
}
\begin{center}
\includegraphics
[width=\textwidth]
{
sybil-phpp
_
rs
}
\end{center}
\end{minipage}
% ---------------------------------------------------------------------------- %
\subsection
{
Summarizing simulation results
}
Each simulation generates an object of class
\Comp
{
optsol
}
containing all
the results of the optimizations. In order to get a quick overview of the
results, the function
\Comp
{
summaryOptsol()
}
can be used. At first, let's
compute all single gene knock-outs of the metabolic model of the core energy
metabolism of
\emph
{
E.
\,
coli
}
:
<<>>=
opt <- oneGeneDel(Ec
_
core, algorithm = "fba", fld = "all")
@
Generate a summary:
<<print=true>>=
sum <- summaryOptsol(opt, Ec
_
core)
@
The function
\Comp
{
summaryOptsol()
}
returns an object of class
\Comp
{
optsolSummary
}
and needs the object of class
\Comp
{
optsol
}
(results of
simulations) and the corresponding object of class
\Comp
{
modelorg
}
(the entire
metabolic network). The generated object of class
\Comp
{
summaryOptsol
}
contains
some information about the flux distribution, substrates, products and limiting
reactions.
The method
\Comp
{
printExchange()
}
prints a subset of the flux distribution for
the exchange reactions in the model. Each column represents the environment of
one optimization. The symbol
\Comp
{
"-"
}
indicates that the corresponding
metabolite is imported (is a substrate); the symbol
\Comp
{
"+"
}
indicates, that
the corresponding metabolite excreted (is a product).
<<>>=
printExchange(sum, j = c(1:50), dense = TRUE)
@
% ---------------------------------------------------------------------------- %
\subsection
{
Parallel computing
}
The package
\pkgname
{}
provides basic support for the R-package
\pkg
{
parallel
}
in function
\Comp
{
multidel()
}
. The following example shows the computation of
all possible triple-knock-out mutants using the model of the core energy
metabolism of
\emph
{
E.
\,
coli
}
. The set of genes included in the analysis will
be reduced to genes, which are not lethal. A gene
$
i
$
is considered as
``lethal'', if in a single-gene-knockout the deletion of gene
$
i
$
results in a
maximum growth ratio of zero.
<<>>=
ref <- optimizeProb(Ec
_
core)
opt <- oneGeneDel(Ec
_
core)
let <- lethal(opt, wt = mod
_
obj(ref))
nletid <- c(1:length(allGenes(Ec
_
core)))[! let]
@
\noindent
At first, a wild-type maximum growth rate is computed and stored in the variable
\Comp
{
ref
}
. Then, all single-gene knock-outs are computed. The variable
\Comp
{
let
}
contains pointers to the gene id's of genes, who's deletion is
lethal. The variable
\Comp
{
nletid
}
contains pointers to the gene id's of all
genes, except for the lethal ones.
<<eval=FALSE>>=
gmat <- combn(nletid, 3)
@
The variable
\Comp
{
gmat
}
now contains a matrix with three rows, each column is
one combination of three values in
\Comp
{
nletid
}
; one set of genes to knock-out
in one step.
<<eval=FALSE>>=
opt <- multiDel(Ec
_
core, nProc = 4, todo = "geneDeletion", del1 = gmat)
@
The function
\Comp
{
multiDel
}
performs a
\Comp
{
geneDeletion
}
with the model
\Comp
{
Ec
\_
core
}
on four CPU's (argument
\Comp
{
nProc
}
) on a shared memory
machine. Argument
\Comp
{
del1
}
is the matrix containing the sets of genes to
delete. This matrix will be split up in smaller sub-matrices all having about the
same number of columns and three rows. The sub-matrices are passed to
\Comp
{
geneDeletion
}
and are processed on separate cores in parallel. The
resulting variable
\Comp
{
opt
}
now contains a list of four objects of class
\Comp
{
optsol
\_
genedel
}
. Use
\Comp
{
mapply
}
to access the values stored in the
\Comp
{
optsol
}
objects.
<<eval=FALSE>>=
mapply(checkOptSol, opt)
@
% ---------------------------------------------------------------------------- %
\subsection
{
Interacting with the optimization process
}
Method
\Comp
{
optimizeProb
}
provides a basic mechanism to run commands before
and or after solving the optimization problem. In order to retrieve the reduced
costs after the optimization, use argument
\Comp
{
poCmd
}
.
<<>>=
opt <- optimizeProb(Ec
_
core, poCmd = list("getRedCosts"))
postProc(opt)
@
% ---------------------------------------------------------------------------- %
\subsection
{
Optimization software
}
To solve optimization problems,
GLPK
\footnote
{
Andrew Makhorin: GNU Linear Programming Kit, version~4.42 or
higher
\url
{
http://www.gnu.org/software/glpk/glpk.html
}}
,
\cplex\footnote
{
\cplex
{}
version 12.2 (or higher) from the IBM Academic
Ini
\-
tia
\-
tive
\url
{
https://www.ibm.com/developerworks/university/academicinitiative/
}}
,
COIN-OR Clp
\footnote
{
COIN-OR linear programming version 1.12.0 or higher
\url
{
https://projects.coin-or.org/Clp
}}
or lp
\_
solve
\footnote
{
lp
\_
solve via R-package
\pkg
{
lpSolveAPI
}
version 5.5.2.0-5
or higher
\url
{
http://lpsolve.sourceforge.net/5.5/index.htm
}}
can be used (package
\pkg
{
sybilGUROBI
}
providing support for Gurobi
optimization
\footnote
{
\url
{
http://www.gurobi.com
}}
is available on request).
All functions performing optimizations, get the arguments
\Comp
{
solver
}
and
\Comp
{
method
}
. The first setting the desired solver and the
latter setting the desired optimization algorithm.
Possible values for the argument
\Comp
{
solver
}
are:
\begin{itemize}
\item
\Comp
{
"glpkAPI"
}
, which is the default,
\item
\Comp
{
"cplexAPI"
}
,
\item
\Comp
{
"clpAPI"
}
or
\item
\Comp
{
"lpSolveAPI"
}
.
\end{itemize}
Perform FBA, using GLPK as solver and ``simplex exact'' as algorithm.
<<eval=FALSE>>=
optimizeProb(Ec
_
core, method = "exact")
@
Perform FBA, using
\cplex
{}
as solver and ``dualopt'' as algorithm.
<<eval=FALSE>>=
optimizeProb(Ec
_
core, solver = "cplexAPI", method = "dualopt")
@
The R-packages
\pkg
{
glpkAPI
}
,
\pkg
{
clpAPI
}
and
\pkg
{
cplexAPI
}
provide access to the C-API of the corresponding optimization software.
They are also available from CRAN
\footref
{
cranfoot
}
.
% ---------------------------------------------------------------------------- %
\subsection
{
Setting parameters to the optimization software
}
\label
{
optparm
}
All functions performing optimizations can handle the argument
\Comp
{
solverParm
}
getting a list or data frame containing parameters used by the
optimization software.
% ---------------------------------------------------------------------------- %
\subsubsection
{
GLPK
}
For available parameters used by GLPK, see the GLPK and the
\pkg
{
glpkAPI
}
documentation.
<<eval=FALSE>>=
opt <- oneGeneDel(Ec
_
core,
solverParm = list(TM
_
LIM = 1000,
PRESOLVE = GLP
_
ON))
@
The above command performs a single gene deletion experiment
(see section~
\ref
{
multknockout
}
), sets the time limit for each optimization to
one second and does pre-solving in each optimization.
% ---------------------------------------------------------------------------- %
\subsubsection
{
\cplex
}
For available parameters used by
\cplex
{}
, see the
\cplex
{}
and the
\pkg
{
cplexAPI
}
documentation.
<<eval=FALSE>>=
opt <- optimizeProb(Ec
_
core,
solverParm = list(CPX
_
PARAM
_
SCRIND = CPX
_
ON,
CPX
_
PARAM
_
EPRHS = 1E-09),
solver = "cplexAPI")
@
The above command performs FBA, sets the messages to screen switch to ``on''
and sets the feasibility tolerance to
$
10
^{
-
9
}$
.
% ---------------------------------------------------------------------------- %
\subsubsection
{
COIN-OR Clp
}
At the time of writing, it is not possible to set any parameters when using
COIN-OR Clp.
% ---------------------------------------------------------------------------- %
\subsubsection
{
lpSolveAPI
}
See the
\pkg
{
lpSolveAPI
}
documentation for parameters for
\Comp
{
lp
\_
solve
}
.
<<eval=FALSE>>=
opt <- optimizeProb(Ec
_
core,
solverParm = list(verbose = "full",
timeout = 10),
solver = "lpSolveAPI")
@
The above command performs FBA, sets the verbose mode to ``full''
and sets the timeout to ten seconds.
% ---------------------------------------------------------------------------- %
\subsection
{
Setting parameters in sybil
}
Parameters to
\pkgname
{}
can be set using the function
\Comp
{
SYBIL
\_
SETTINGS
}
.
Parameter names and their default values are shown in table~
\ref
{
sybilparm
}
,
all possible values are described in the
\Comp
{
SYBIL
\_
SETTINGS
}
documentation.
<<>>=
help(SYBIL
_
SETTINGS)
@
\begin{table}
\centering
\caption
{
Available parameters in
\pkgname
{}
and their default values.
}
\label
{
sybilparm
}
\begin{tabular}
{
ll
}
\toprule
parameter name
&
default value
\\
\midrule
\Comp
{
SOLVER
}
&
\Comp
{
glpkAPI
}
\\
\Comp
{
METHOD
}
&
\Comp
{
simplex
}
\\
\Comp
{
SOLVER
\_
CTRL
\_
PARM
}
&
\Comp
{
as.data.frame(NA)
}
\\
\Comp
{
ALGORITHM
}
&
\Comp
{
fba
}
\\
\Comp
{
TOLERANCE
}
&
\Comp
{
1E-6
}
\\
\Comp
{
MAXIMUM
}
&
\Comp
{
1000
}
\\
\Comp
{
OPT
\_
DIRECTION
}
&
\Comp
{
max
}
\\
\Comp
{
PATH
\_
TO
\_
MODEL
}
&
\Comp
{
.
}
\\
\bottomrule
\end{tabular}
\end{table}
The function
\Comp
{
SYBIL
\_
SETTINGS
}
gets at most two arguments:
<<eval=FALSE>>=
SYBIL
_
SETTINGS("parameter name", value)
@
the first one giving the name of the parameter to set (as character string) and
the second one giving the desired value. If
\Comp
{
SYBIL
\_
SETTINGS
}
is called
with only one argument
<<eval=FALSE>>=
SYBIL
_
SETTINGS("parameter name")
@
the current setting of
\Comp
{
"parameter name"
}
will be returned. All parameters
and their values can be achieved by calling
\Comp
{
SYBIL
\_
SETTINGS
}
without
any argument.
<<eval=FALSE>>=
SYBIL
_
SETTINGS()
@
% ---------------------------------------------------------------------------- %
\subsubsection
{
Solver software specific
}
The two parameters
\Comp
{
SOLVER
}
and
\Comp
{
METHOD
}
depend on each other, e.
\,
g.
the method called
\Comp
{
simplex
}
is only available when
\Comp
{
glpkAPI
}
is used
as solver software. Each solver has its own specific set of methods available in
order to solve optimization problems. If one changes the parameter
\Comp
{
SOLVER
}
to, let's say
\Comp
{
cplexAPI
}
, the parameter
\Comp
{
METHOD
}
will automatically
be adjusted to the default method used by
\Comp
{
cplexAPI
}
.
Set parameter solver to
\cplex
{}
for every optimization:
<<>>=
SYBIL
_
SETTINGS("SOLVER", "cplexAPI", loadPackage = FALSE)
@
Now,
\cplex
{}
is used as default solver e.
\,
g. in
\Comp
{
optimizeProb
}
or
\Comp
{
oneGeneDel
}
, and parameter
\Comp
{
METHOD
}
has changed to the default method
in
\pkg
{
cplexAPI
}
. Setting argument
\Comp
{
loadPackage
}
to
\Comp
{
FALSE
}
prevents
loading the API package. Get the current setting for
\Comp
{
Method
}
:
<<>>=
SYBIL
_
SETTINGS("METHOD")
@
Reset the solver to
\Comp
{
glpkAPI
}
:
<<>>=
SYBIL
_
SETTINGS("SOLVER", "glpkAPI")
@
Now, the default method again is
\Comp
{
simplex
}
<<>>=
SYBIL
_
SETTINGS("METHOD")
@
It is not possible to set a wrong method for a given solver. If the desired
method is not available, always the default method is used.
Parameters to the solver software (parameter
\Comp
{
SOLVER
\_
CTRL
\_
PARM
}
) must be
set as
\Comp
{
list
}
or
\Comp
{
data.frame
}
as described in section~
\ref
{
optparm
}
.
% ---------------------------------------------------------------------------- %
\subsubsection
{
Analysis specific
}
The parameter
\Comp
{
ALGORITHM
}
controls the way gene deletion analysis will be
performed. The default setting
\Comp
{
"fba"
}
will use flux-balance analysis (FBA)
as described in
\citet
{
Edwards:2002kx
}
and
\citet
{
Orth:2010vn
}
. Setting this
parameter to
\Comp
{
"lmoma"
}
, results in a linearized version of the MOMA
algorithm described in
\citet
{
Segre:2002fk
}
("moma" will run the original
version). The linearized version of MOMA, like it is implemented in the COBRA
Toolbox
\citep
{
Becker:2007uq,Schellenberger:2011fk
}
, can be used in functions
like
\Comp
{
oneGeneDel()
}
via the Boolean argument
\Comp
{
COBRAflag
}
.
Setting the parameter
\Comp
{
"ALGORITHM"
}
to
\Comp
{
"room"
}
will run a regulatory
on/off minimization as described in
\citet
{
Shlomi:2005fk
}
.
See also section~
\ref
{
komut
}
for details on gene deletion analysis.
% ---------------------------------------------------------------------------- %
\section
{
Central data structures
}
\subsection
{
Class modelorg
}
\label
{
classmod
}
The class
\Comp
{
modelorg
}
is the core datastructure to represent a metabolic
network, in particular the stoichiometric matrix
$
S
$
.
An example (E.
\,
coli core flux by
\citep
{
Palsson:2006fk
}
) is shipped within
\pkgname
and can be loaded this way:
<<>>=
data(Ec
_
core)
Ec
_
core
@
The generic method
\Comp
{
show
}
displays a short summary of the parameters of the
metabolic network. See
<<>>=
help("modelorg")
@
for the list of available methods. All slots of an object of class
\Comp
{
modelorg
}
are accessible via setter and getter methods having the same
name as the slot. For example, slot
\Comp
{
react
\_
num
}
contains the number of
reactions in the model (equals the number of columns in
$
S
$
). Access the
number of reactions in the
\emph
{
E.
\,
coli
}
model.
<<>>=
react
_
num(Ec
_
core)
@
Get all reaction is's:
<<>>=
id <- react
_
id(Ec
_
core)
@
Change a reaction id:
<<>>=
react
_
id(Ec
_
core)[13] <- "biomass"
@
Plot an image of the stoichiometric matrix
$
S
$
:
\begin{center}
<<fig=TRUE>>=
cg <- gray(0:8/8)
image(S(Ec
_
core), col.regions = c(cg, rev(cg)))
@
\end{center}
Matrices in objects of class
\Comp
{
modelorg
}
are stored in formats provided by
the
\pkg
{
Matrix
}
-package
\footnote
{
http://CRAN.R-project.org/package=Matrix
}
.
Objects of class
\Comp
{
modelorg
}
can easily be created. Sources are common file
formats like tab delimited files from the
BiGG database
\citep
{
Schellenberger:2010fk
}
\footnote
{
\url
{
http://bigg.ucsd.edu
}}
or SBML files (with package
\pkg
{
sybilSBML
}
\footref
{
sybilhome
}
).
See section~
\ref
{
inputformats
}
on
page
\pageref
{
inputformats
}
about supported file formats and their description.
Read a reaction list generated from the BiGG database:
<<eval=FALSE>>=
mod <- readTSVmod(reactList = "reactionList.txt")
@
Here,
\Comp
{
"reactionList.txt"
}
is an from BiGG database exported reaction
list. Usually, these files do neither contain an objective function, nor upper
and lower bounds on the reaction rates. They need to be added to the returned
object of class
\Comp
{
modelorg
}
using the methods
\Comp
{
obj
\_
coef<-
}
,
\Comp
{
lowbnd<-
}
and
\Comp
{
uppbnd<-
}
, or by adding the columns
\Comp
{
obj
\_
coef
}
,
\Comp
{
lowbnd
}
and
\Comp
{
uppbnd
}
to the input file.
% ---------------------------------------------------------------------------- %
\subsection
{
Class optsol
}
\label
{
classopt
}
\begin{figure}
\centering
\includegraphics
{
optsol-class
}
\caption
{
UML representation of class
\Comp
{
optsol
}
.
}
\label
{
optsol-class
}
\end{figure}
The derived classes of class
\Comp
{
optsol
}
(optimization solution) are used to
store information and results from various optimization problems and their
biological relation. See
<<>>=
help("optsol")
@
for the list of available methods to access the
data (figure~
\ref
{
optsol-class
}
). A simple demonstration would be:
<<print=true>>=
os <- optimizeProb(Ec
_
core)
is(os)
@
Retrieve objective value.
<<>>=
lp
_
obj(os)
@
Retrieve flux distribution.
<<>>=
getFluxDist(os)
@
% ---------------------------------------------------------------------------- %
\subsection
{
Class optObj
}
\label
{
classoo
}
\begin{figure}
\centering
\includegraphics
{
optObj-class
}
\caption
{
UML representation of class
\Comp
{
optObj
}
.
}
\label
{
optObj-class
}
\end{figure}
The class
\Comp
{
optObj
}
is
\pkgname
's internal representation of an optimization
problem (figure~
\ref
{
optObj-class
}
). Objects of this class harbor four slots:
\begin{inparaenum}
[i)]
\item
\Comp
{
oobj
}
: a pointer to the C-structure of the problem object (depending
on the solver software),
\item
\Comp
{
solver
}
: the name of the solver,
\item
\Comp
{
method
}
: the name of the optimization method used by the solver and
\item
\Comp
{
probType
}
: single character string, describing the problem type
(e.
\,
g.
\Comp
{
lp
}
: linear programming, or
\Comp
{
mip
}
: mixed integer
programming).
\end{inparaenum}
The package
\pkgname
provides several functions to alter the problem object.
Each function takes care of the special needs of every supported solver. The
following example should illustrate the purpose of class
\Comp
{
optObj
}
.
Consider a linear programming problem, here written in lp formatted file
format:
\begin{verbatim}
Maximize
obj: + x
_
1 + x
_
2
Subject To
r
_
1: + 0.5 x
_
1 + x
_
2 <= 4.5
r
_
2: + 2 x
_
1 + x
_
2 <= 9
Bounds
0 <= x
_
1 <= 1000
0 <= x
_
2 <= 1000
\end{verbatim}
In order to solve this lp problem with
\pkgname
{}
, an object of class
\Comp
{
optObj
}
has to be created. The constructor function has the same name as
the class it builds.
<<print=true>>=
lp <- optObj(solver = "glpkAPI", method = "exact")
@
The first argument is the used solver software, in this case it is GLPK. The
second optional argument gives the method, how the solver software has to solve
the problem. Here, it is the simplex exact algorithm of GLPK. The constructor
function
\Comp
{
optObj()
}
(figure~
\ref
{
optObj-const
}
) returns an object of class
\Comp
{
optObj
\_
glpkAPI
}
in this case. This class enables
\pkgname
to communicate
with the GLPK software. The constructor function
\Comp
{
optObj()
}
calls the
function
\Comp
{
checkDefaultMethod()
}
which tries to load the specified solver
package and also checks if all other arguments (
\Comp
{
method
}
and
\Comp
{
pType
}
)
are valid arguments. Each solver package has its own set of methods for specific
types of optimization (e.
\,
g. linear programming or quadratic programming) and
is thus available maybe not for all problem types.
\begin{figure}
\centering
\includegraphics
{
optObj-const
}
\caption
{
Work flow of the constructor function
\Comp
{
optObj()
}
.
}
\label
{
optObj-const
}
\end{figure}
Initialize the new problem object. Each solver software needs to create
specific data structures to hold the problem and solution data.
<<print=true>>=
lp <- initProb(lp)
@
Slot
\Comp
{
oobj
}
holds a pointer to the problem object of GLPK. Now, we need to
allocate space for the problem data and load the data into the problem object.
<<>>=
cm <- Matrix(c(0.5, 2, 1, 1), nrow = 2)
loadLPprob(lp, nCols = 2, nRows = 2, mat = cm,
lb = c(0, 0), ub = rep(1000, 2), obj = c(1, 1),
rlb = c(0, 0), rub = c(4.5, 9), rtype = c("U", "U"),
lpdir = "max")
@
The first command generates the constraint matrix in sparse format (see also
documentation in package
\pkg
{
Matrix
}
). The second command loads the problem
data into the problem object.
<<>>=
lp
@
All data are now set in the problem object, so it can be solved.
<<print=true>>=
status <- solveLp(lp)
@
Translate the status code in a text string.
<<>>=
getMeanReturn(code = status, solver = solver(lp))
@
Check the solution status.
<<>>=
status <- getSolStat(lp)
getMeanStatus(code = status, solver = solver(lp))
@
Retrieve the value of the objective function and the values of the variables
after optimization.
<<>>=
getObjVal(lp)
getFluxDist(lp)
@
Get the reduced costs.
<<>>=
getRedCosts(lp)
@
Delete problem object and free all memory allocated by the solver software.
<<>>=
delProb(lp)
lp
@
% ---------------------------------------------------------------------------- %
\subsection
{
Class sysBiolAlg
}
\label
{
classsba
}
\begin{figure}
\centering
\includegraphics
{
sysBiolAlg-class
}
\caption
{
UML representation of class
\Comp
{
sysBiolAlg
}
.
}
\label
{
sysBiolAlg-class
}
\end{figure}
The class
\Comp
{
sysBiolAlg
}
holds objects of class
\Comp
{
optObj
}
which are
prepared for a particular kind of algorithm, e.
\,
g. FBA, MOMA or ROOM
(figure~
\ref
{
sysBiolAlg-class
}
). Class
\Comp
{
optObj
}
takes care of the
communication between
\pkgname
and the solver software. Class
\Comp
{
sysBiolAlg
}
instead is responsible for the algorithm used to analyze a metabolic network.
The constructor function
\Comp
{
sysBiolalg()
}
(figure~
\ref
{
sysBiolAlg-const
}
)
gets at least two arguments:
\begin{inparaenum}
[1.]
\item
an object of class
\Comp
{
modelorg
}
(section~
\ref
{
classmod
}
) and
\item
a single character string indicating the name of the desired algorithm.
\end{inparaenum}
Further arguments are passed through argument
\Comp
{
\dots
}
to the corresponding
constructor of the class extending class
\Comp
{
sysBiolAlg
}
. The base class
\Comp
{
sysBiolAlg
}
is virtual, no objects can be created from that class
directly. The constructor function builds an instance of a class extending the
base class:
<<>>=
ec <- sysBiolAlg(Ec
_
core, algorithm = "fba")
is(ec)
@
Now, the variable
\Comp
{
ec
}
contains an object of class
\Comp
{
sysBiolAlg
\_
fba
}
.
Slot
\Comp
{
problem
}
of that object is of class
\Comp
{
optObj
}
and is prepared
for FBA. The optimization can be performed with method
\Comp
{
optimizeProb
}
:
<<>>=
opt <- optimizeProb(ec)
@
The return value of
\Comp
{
optimizeProb
}
is discussed in section~
\ref
{
fba
}
.
Method
\Comp
{
optimizeProb
}
of class
\Comp
{
sysBiolAlg
}
always returns a list,
not an object of class
\Comp
{
optsol
}
.
In order to run a ROOM analysis create an object of class
\Comp
{
sysBiolAlg
\_
room
}
:
<<>>=
ecr <- sysBiolAlg(Ec
_
core, algorithm = "room", wtflux = opt
$
fluxes
)
is
(
ecr
)
ecr
@
Argument
\Comp
{
wtflux
}
gets the optimal flux distribution computed via FBA
earlier. It is used by the constructor method of class
\Comp
{
sysBiolAlg
\_
room
}
.
\begin
{
figure
}
\centering
\includegraphics
{
sysBiolAlg
-
const
}
\caption
{
Work flow of the constructor function
\Comp
{
sysBiolAlg
()
}
.
}
\label
{
sysBiolAlg
-
const
}
\end
{
figure
}
\begin
{
figure
}
[
ht
]
\centering
\includegraphics
{
sysBiolAlg
-
init
}
\caption
{
Work flow of the constructor methods of classes extending
class
\Comp
{
sysBiolAlg
}
. The gray shaded part is done by the
constructor method or the base class.
}
\label
{
sysBiolAlg
-
init
}
\end
{
figure
}
% ---------------------------------------------------------------------------- %
\subsubsection
{
Constructor methods
}
The base class
\Comp
{
sysBiolAlg
}
contains a constructor method
\Comp
{
initialize
}
which is called by the constructor methods of the subclasses via
\Comp
{
callNextMethod
()
}
(
figure~
\ref
{
sysBiolAlg
-
init
}
)
. Every subclass has its
own constructor method preparing all necessary data structures in order to call
the constructor of the base class. For example, for the ROOM algorithm, a
``wild type'' flux distribution is required
(
argument
\Comp
{
wtflux
}
in the
example above
)
. The constructor of class
\Comp
{
sysBiolAlg
\_
room
}
generates all
data structures to build the optimization problem, e.
\,
g. the constraint matrix,
objective coefficients, right hand side,
\dots
{}
It passes all these data to
the constructor of
\Comp
{
sysBiolAlg
}
via a call to
\Comp
{
callNextMethod
()
}
.
This constructor generates the object of class
\Comp
{
optObj
}
while taking care
on solver software specific details.
% ---------------------------------------------------------------------------- %
\subsubsection
{
New algorithms
}
In order to extend the functionality of
\pkgname
with new algorithms, a new
class describing that algorithm is required. The function
\Comp
{
promptSysBiolAlg
()
}
generates a skeletal structure of a new class definition
and a corresponding constructor method. To implement an algorithm named ``foo'',
run
<<eval
=
FALSE>>
=
promptSysBiolAlg
(
algorithm
=
"foo"
)
@
which generates a file
\Comp
{
sysBiolAlg
\_
fooClass.R
}
containing the new class
definition. The class
\Comp
{
sysBiolAlg
\_
foo
}
will extend class
\Comp
{
sysBiolAlg
}
directly and will not add any slots to the class. Additionally, an unfinished
method
\Comp
{
initialize
}
is included. Here it is necessary to generate the data
structures required by the new algorithm. There are comments in the skeletal
structure guiding through the process.
%% maybe next chapter: how to extend sybil, example fluxVar or robAna
% ---------------------------------------------------------------------------- %
\newpage
\bibliographystyle
{
abbrvnat
}
\bibliography
{
sybil
}
\end
{
document
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment