Skip to content
Snippets Groups Projects
Commit 2e220285 authored by Claus Jonathan Fritzemeier's avatar Claus Jonathan Fritzemeier
Browse files

changes mentioned by kurt hornik

parent 02e6a589
No related branches found
No related tags found
No related merge requests found
Package: sybil Package: sybil
Type: Package Type: Package
Title: sybil - Efficient Constrained Based Modelling in R Title: Efficient Constrained Based Modelling in R
Version: 1.3.0 Version: 1.3.0
Date: 2015-03-30 Date: 2015-06-17
Authors@R: c(person("Gabriel", "Gelius-Dietrich", role = c("aut")), Authors@R: c(
person(c("C.", "Jonathan"), "Fritzemeier", role = c("ctb", "cre"), email = "clausjonathan.fritzemeier@uni-duesseldorf.de"), person(c("C.", "Jonathan"), "Fritzemeier", role = c("cre", "ctb"), email = "clausjonathan.fritzemeier@uni-duesseldorf.de"),
person("Gabriel", "Gelius-Dietrich", role = c("aut")),
person("Rajen", "Piernikarczyk", role = "ctb"), person("Rajen", "Piernikarczyk", role = "ctb"),
person(c("Marc", "Andre"), "Daxer", role = "ctb"), person(c("Marc", "Andre"), "Daxer", role = "ctb"),
person("Benjamin", "Braasch", role = "ctb"), person("Benjamin", "Braasch", role = "ctb"),
...@@ -17,9 +18,9 @@ Suggests: glpkAPI (>= 1.2.8), cplexAPI (>= 1.2.4), clpAPI (>= 1.2.4), ...@@ -17,9 +18,9 @@ Suggests: glpkAPI (>= 1.2.8), cplexAPI (>= 1.2.4), clpAPI (>= 1.2.4),
lpSolveAPI (>= 5.5.2.0), parallel, grid lpSolveAPI (>= 5.5.2.0), parallel, grid
URL: URL:
http://www.cs.hhu.de/en/research-groups/bioinformatics/software/sybil.html http://www.cs.hhu.de/en/research-groups/bioinformatics/software/sybil.html
Description: The package sybil is a Systems Biology Library for R, implementing algorithms for constraint based analyses of metabolic networks (e.g. flux-balance analysis (FBA), minimization of metabolic adjustment (MOMA), regulatory on/off minimization (ROOM), robustness analysis and flux variability analysis). Description: This Systems Biology Library for R implements algorithms for constraint based analyses of metabolic networks (e.g. flux-balance analysis (FBA), minimization of metabolic adjustment (MOMA), regulatory on/off minimization (ROOM), robustness analysis and flux variability analysis). Most of the current LP/MILP solvers are supported via additional packages.
LazyLoad: yes LazyLoad: yes
License: GPL-3 License: GPL-3 | file LICENSE
Collate: generics.R validmodelorg.R validoptsol.R validreactId.R Collate: generics.R validmodelorg.R validoptsol.R validreactId.R
validreactId_Exch.R validsysBiolAlg.R addAlgorithm.R validreactId_Exch.R validsysBiolAlg.R addAlgorithm.R
addExchReact.R addReact.R addSolver.R blockedReact.R addExchReact.R addReact.R addSolver.R blockedReact.R
......
...@@ -118,7 +118,9 @@ ...@@ -118,7 +118,9 @@
data(Ec_core) data(Ec_core)
# add reaction A + 2 B <-> C to the model # add reaction A + 2 B <-> C to the model
modelNew <- addReact(Ec_core, id="newReact", met=c("A", "B", "C"), Scoef=c(-1, -2, 1), reversible=TRUE, lb=-1000, ub=1000, obj=0) modelNew <- addReact(Ec_core, id="newReact", met=c("A", "B", "C"),
Scoef=c(-1, -2, 1), reversible=TRUE,
lb=-1000, ub=1000, obj=0)
# view the new reaction # view the new reaction
shrinkMatrix(modelNew, j="newReact") shrinkMatrix(modelNew, j="newReact")
......
...@@ -88,9 +88,15 @@ ...@@ -88,9 +88,15 @@
library(sybil) library(sybil)
data(Ec_core) data(Ec_core)
prob <- sysBiolAlg(Ec_core, algorithm = "fba", solver="glpkAPI") # create a sysBiolAlg object (we use here GLPK (!))
save(file="prob.RData",prob) # write the R-object to disc # create a sysBiolAlg object (we use here GLPK (!))
writeProb(prob@problem, fname="prob.lp", ff="lp") # now write the linear program part (managed by the solver) to disc prob <- sysBiolAlg(Ec_core, algorithm = "fba", solver="glpkAPI")
# write the R-object to disc
save(file="prob.RData",prob)
# now write the linear program part (managed by the solver) to disc
writeProb(prob@problem, fname="prob.lp", ff="lp")
# start new R session # start new R session
......
...@@ -87,9 +87,14 @@ ...@@ -87,9 +87,14 @@
library(sybil) library(sybil)
data(Ec_core) data(Ec_core)
prob <- sysBiolAlg(Ec_core, algorithm = "fba", solver="glpkAPI") # create a sysBiolAlg object (we use here GLPK (!)) # create a sysBiolAlg object (we use here GLPK (!))
save(file="prob.RData",prob) # write the R-object to disc prob <- sysBiolAlg(Ec_core, algorithm = "fba", solver="glpkAPI")
writeProb(prob@problem, fname="prob.lp", ff="lp") # now write the linear program part (managed by the solver) to disc
# write the R-object to disc
save(file="prob.RData",prob)
# now write the linear program part (managed by the solver) to disc
writeProb(prob@problem, fname="prob.lp", ff="lp")
# start new R session # start new R session
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment