Skip to content
Snippets Groups Projects
Select Git revision
  • master
  • dev
  • sybilNLO
  • gprBug
  • maximumtotalflux
  • easyConstraint
  • switchbug
  • thuong
  • momafix
  • rmReactBug
10 results

README.md

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    evaluate_unified_datasets.py 2.39 KiB
    import json
    from pprint import pprint
    
    
    def evaluate(predict_result):
        predict_result = json.load(open(predict_result))
    
        metrics = {x: {'TP':0, 'FP':0, 'FN':0} for x in ['overall', 'binary', 'categorical', 'non-categorical']}
        acc = []
    
        for sample in predict_result:
            flag = True
            for da_type in ['binary', 'categorical', 'non-categorical']:
                if da_type == 'binary':
                    predicts = [(x['intent'], x['domain'], x['slot']) for x in sample['predictions']['dialogue_acts'][da_type]]
                    labels = [(x['intent'], x['domain'], x['slot']) for x in sample['dialogue_acts'][da_type]]
                else:
                    predicts = [(x['intent'], x['domain'], x['slot'], ''.join(x['value'].split()).lower()) for x in sample['predictions']['dialogue_acts'][da_type]]
                    labels = [(x['intent'], x['domain'], x['slot'], ''.join(x['value'].split()).lower()) for x in sample['dialogue_acts'][da_type]]
                for ele in predicts:
                    if ele in labels:
                        metrics['overall']['TP'] += 1
                        metrics[da_type]['TP'] += 1
                    else:
                        metrics['overall']['FP'] += 1
                        metrics[da_type]['FP'] += 1
                for ele in labels:
                    if ele not in predicts:
                        metrics['overall']['FN'] += 1
                        metrics[da_type]['FN'] += 1
                flag &= (sorted(predicts)==sorted(labels))
            acc.append(flag)
        
        for metric in metrics:
            TP = metrics[metric].pop('TP')
            FP = metrics[metric].pop('FP')
            FN = metrics[metric].pop('FN')
            precision = 1.0 * TP / (TP + FP) if TP + FP else 0.
            recall = 1.0 * TP / (TP + FN) if TP + FN else 0.
            f1 = 2.0 * precision * recall / (precision + recall) if precision + recall else 0.
            metrics[metric]['precision'] = precision
            metrics[metric]['recall'] = recall
            metrics[metric]['f1'] = f1
        metrics['accuracy'] = sum(acc)/len(acc)
    
        return metrics
    
    
    if __name__ == '__main__':
        from argparse import ArgumentParser
        parser = ArgumentParser(description="calculate NLU metrics for unified datasets")
        parser.add_argument('--predict_result', '-p', type=str, required=True, help='path to the prediction file that in the unified data format')
        args = parser.parse_args()
        print(args)
        metrics = evaluate(args.predict_result)
        pprint(metrics)