Select Git revision
sysBiolAlg_fbaEasyConstraintClass.R
-
Claus Jonathan Fritzemeier authoredClaus Jonathan Fritzemeier authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
dataset_multiwoz21.py 23.26 KiB
# coding=utf-8
#
# Copyright 2020 Heinrich Heine University Duesseldorf
#
# Part of this code is based on the source code of BERT-DST
# (arXiv:1907.03040)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
from utils_dst import (DSTExample, convert_to_unicode)
# Required for mapping slot names in dialogue_acts.json file
# to proper designations.
ACTS_DICT = {'taxi-depart': 'taxi-departure',
'taxi-dest': 'taxi-destination',
'taxi-leave': 'taxi-leaveAt',
'taxi-arrive': 'taxi-arriveBy',
'train-depart': 'train-departure',
'train-dest': 'train-destination',
'train-leave': 'train-leaveAt',
'train-arrive': 'train-arriveBy',
'train-people': 'train-book_people',
'restaurant-price': 'restaurant-pricerange',
'restaurant-people': 'restaurant-book_people',
'restaurant-day': 'restaurant-book_day',
'restaurant-time': 'restaurant-book_time',
'hotel-price': 'hotel-pricerange',
'hotel-people': 'hotel-book_people',
'hotel-day': 'hotel-book_day',
'hotel-stay': 'hotel-book_stay',
'booking-people': 'booking-book_people',
'booking-day': 'booking-book_day',
'booking-stay': 'booking-book_stay',
'booking-time': 'booking-book_time',
}
LABEL_MAPS = {} # Loaded from file
# Loads the dialogue_acts.json and returns a list
# of slot-value pairs.
def load_acts(input_file):
with open(input_file) as f:
acts = json.load(f)
s_dict = {}
for d in acts:
for t in acts[d]:
# Only process, if turn has annotation
if isinstance(acts[d][t], dict):
for a in acts[d][t]:
aa = a.lower().split('-')
if aa[1] == 'inform' or aa[1] == 'recommend' or aa[1] == 'select' or aa[1] == 'book':
for i in acts[d][t][a]:
s = i[0].lower()
v = i[1].lower().strip()
if s == 'none' or v == '?' or v == 'none':
continue
slot = aa[0] + '-' + s
if slot in ACTS_DICT:
slot = ACTS_DICT[slot]
key = d + '.json', t, slot
# In case of multiple mentioned values...
# ... Option 1: Keep first informed value
if key not in s_dict:
s_dict[key] = list([v])
# ... Option 2: Keep last informed value
#s_dict[key] = list([v])
return s_dict
def normalize_time(text):
text = re.sub("(\d{1})(a\.?m\.?|p\.?m\.?)", r"\1 \2", text) # am/pm without space
text = re.sub("(^| )(\d{1,2}) (a\.?m\.?|p\.?m\.?)", r"\1\2:00 \3", text) # am/pm short to long form
text = re.sub("(^| )(at|from|by|until|after) ?(\d{1,2}) ?(\d{2})([^0-9]|$)", r"\1\2 \3:\4\5", text) # Missing separator
text = re.sub("(^| )(\d{2})[;.,](\d{2})", r"\1\2:\3", text) # Wrong separator
text = re.sub("(^| )(at|from|by|until|after) ?(\d{1,2})([;., ]|$)", r"\1\2 \3:00\4", text) # normalize simple full hour time
text = re.sub("(^| )(\d{1}:\d{2})", r"\g<1>0\2", text) # Add missing leading 0
# Map 12 hour times to 24 hour times
text = re.sub("(\d{2})(:\d{2}) ?p\.?m\.?", lambda x: str(int(x.groups()[0]) + 12 if int(x.groups()[0]) < 12 else int(x.groups()[0])) + x.groups()[1], text)
text = re.sub("(^| )24:(\d{2})", r"\g<1>00:\2", text) # Correct times that use 24 as hour
return text
def normalize_text(text):
text = normalize_time(text)
text = re.sub("n't", " not", text)
text = re.sub("(^| )zero(-| )star([s.,? ]|$)", r"\g<1>0 star\3", text)
text = re.sub("(^| )one(-| )star([s.,? ]|$)", r"\g<1>1 star\3", text)
text = re.sub("(^| )two(-| )star([s.,? ]|$)", r"\g<1>2 star\3", text)
text = re.sub("(^| )three(-| )star([s.,? ]|$)", r"\g<1>3 star\3", text)
text = re.sub("(^| )four(-| )star([s.,? ]|$)", r"\g<1>4 star\3", text)
text = re.sub("(^| )five(-| )star([s.,? ]|$)", r"\g<1>5 star\3", text)
text = re.sub("archaelogy", "archaeology", text) # Systematic typo
text = re.sub("guesthouse", "guest house", text) # Normalization
text = re.sub("(^| )b ?& ?b([.,? ]|$)", r"\1bed and breakfast\2", text) # Normalization
text = re.sub("bed & breakfast", "bed and breakfast", text) # Normalization
return text
# This should only contain label normalizations. All other mappings should
# be defined in LABEL_MAPS.
def normalize_label(slot, value_label):
# Normalization of empty slots
if value_label == '' or value_label == "not mentioned":
return "none"
# Normalization of time slots
if "leaveAt" in slot or "arriveBy" in slot or slot == 'restaurant-book_time':
return normalize_time(value_label)
# Normalization
if "type" in slot or "name" in slot or "destination" in slot or "departure" in slot:
value_label = re.sub("guesthouse", "guest house", value_label)
# Map to boolean slots
if slot == 'hotel-parking' or slot == 'hotel-internet':
if value_label == 'yes' or value_label == 'free':
return "true"
if value_label == "no":
return "false"
if slot == 'hotel-type':
if value_label == "hotel":
return "true"
if value_label == "guest house":
return "false"
return value_label
def get_token_pos(tok_list, value_label):
find_pos = []
found = False
label_list = [item for item in map(str.strip, re.split("(\W+)", value_label)) if len(item) > 0]
len_label = len(label_list)
for i in range(len(tok_list) + 1 - len_label):
if tok_list[i:i + len_label] == label_list:
find_pos.append((i, i + len_label)) # start, exclusive_end
found = True
return found, find_pos
def check_label_existence(value_label, usr_utt_tok):
in_usr, usr_pos = get_token_pos(usr_utt_tok, value_label)
# If no hit even though there should be one, check for value label variants
if not in_usr and value_label in LABEL_MAPS:
for value_label_variant in LABEL_MAPS[value_label]:
in_usr, usr_pos = get_token_pos(usr_utt_tok, value_label_variant)
if in_usr:
break
return in_usr, usr_pos
def check_slot_referral(value_label, slot, seen_slots):
referred_slot = 'none'
if slot == 'hotel-stars' or slot == 'hotel-internet' or slot == 'hotel-parking':
return referred_slot
for s in seen_slots:
# Avoid matches for slots that share values with different meaning.
# hotel-internet and -parking are handled separately as Boolean slots.
if s == 'hotel-stars' or s == 'hotel-internet' or s == 'hotel-parking':
continue
if re.match("(hotel|restaurant)-book_people", s) and slot == 'hotel-book_stay':
continue
if re.match("(hotel|restaurant)-book_people", slot) and s == 'hotel-book_stay':
continue
if slot != s and (slot not in seen_slots or seen_slots[slot] != value_label):
if seen_slots[s] == value_label:
referred_slot = s
break
elif value_label in LABEL_MAPS:
for value_label_variant in LABEL_MAPS[value_label]:
if seen_slots[s] == value_label_variant:
referred_slot = s
break
return referred_slot
def is_in_list(tok, value):
found = False
tok_list = [item for item in map(str.strip, re.split("(\W+)", tok)) if len(item) > 0]
value_list = [item for item in map(str.strip, re.split("(\W+)", value)) if len(item) > 0]
tok_len = len(tok_list)
value_len = len(value_list)
for i in range(tok_len + 1 - value_len):
if tok_list[i:i + value_len] == value_list:
found = True
break
return found
def delex_utt(utt, values):
utt_norm = tokenize(utt)
for s, vals in values.items():
for v in vals:
if v != 'none':
v_norm = tokenize(v)
v_len = len(v_norm)
for i in range(len(utt_norm) + 1 - v_len):
if utt_norm[i:i + v_len] == v_norm:
utt_norm[i:i + v_len] = ['[UNK]'] * v_len
return utt_norm
# Fuzzy matching to label informed slot values
def check_slot_inform(value_label, inform_label):
result = False
informed_value = 'none'
vl = ' '.join(tokenize(value_label))
for il in inform_label:
if vl == il:
result = True
elif is_in_list(il, vl):
result = True
elif is_in_list(vl, il):
result = True
elif il in LABEL_MAPS:
for il_variant in LABEL_MAPS[il]:
if vl == il_variant:
result = True
break
elif is_in_list(il_variant, vl):
result = True
break
elif is_in_list(vl, il_variant):
result = True
break
elif vl in LABEL_MAPS:
for value_label_variant in LABEL_MAPS[vl]:
if value_label_variant == il:
result = True
break
elif is_in_list(il, value_label_variant):
result = True
break
elif is_in_list(value_label_variant, il):
result = True
break
if result:
informed_value = il
break
return result, informed_value
def get_turn_label(value_label, inform_label, sys_utt_tok, usr_utt_tok, slot, seen_slots, slot_last_occurrence):
usr_utt_tok_label = [0 for _ in usr_utt_tok]
informed_value = 'none'
referred_slot = 'none'
if value_label == 'none' or value_label == 'dontcare' or value_label == 'true' or value_label == 'false':
class_type = value_label
else:
in_usr, usr_pos = check_label_existence(value_label, usr_utt_tok)
if in_usr:
class_type = 'copy_value'
if slot_last_occurrence:
(s, e) = usr_pos[-1]
for i in range(s, e):
usr_utt_tok_label[i] = 1
else:
for (s, e) in usr_pos:
for i in range(s, e):
usr_utt_tok_label[i] = 1
else:
is_informed, informed_value = check_slot_inform(value_label, inform_label)
if is_informed:
class_type = 'inform'
else:
referred_slot = check_slot_referral(value_label, slot, seen_slots)
if referred_slot != 'none':
class_type = 'refer'
else:
class_type = 'unpointable'
return informed_value, referred_slot, usr_utt_tok_label, class_type
def tokenize(utt):
utt_lower = convert_to_unicode(utt).lower()
utt_lower = normalize_text(utt_lower)
utt_tok = [tok for tok in map(str.strip, re.split("(\W+)", utt_lower)) if len(tok) > 0]
return utt_tok
def create_examples(input_file, acts_file, set_type, slot_list,
label_maps={},
append_history=False,
use_history_labels=False,
swap_utterances=False,
label_value_repetitions=False,
delexicalize_sys_utts=False,
analyze=False):
"""Read a DST json file into a list of DSTExample."""
sys_inform_dict = load_acts(acts_file)
with open(input_file, "r", encoding='utf-8') as reader:
input_data = json.load(reader)
global LABEL_MAPS
LABEL_MAPS = label_maps
examples = []
for dialog_id in input_data:
entry = input_data[dialog_id]
utterances = entry['log']
# Collects all slot changes throughout the dialog
cumulative_labels = {slot: 'none' for slot in slot_list}
# First system utterance is empty, since multiwoz starts with user input
utt_tok_list = [[]]
mod_slots_list = [{}]
# Collect all utterances and their metadata
usr_sys_switch = True
turn_itr = 0
for utt in utterances:
# Assert that system and user utterances alternate
is_sys_utt = utt['metadata'] != {}
if usr_sys_switch == is_sys_utt:
print("WARN: Wrong order of system and user utterances. Skipping rest of dialog %s" % (dialog_id))
break
usr_sys_switch = is_sys_utt
if is_sys_utt:
turn_itr += 1
# Delexicalize sys utterance
if delexicalize_sys_utts and is_sys_utt:
inform_dict = {slot: 'none' for slot in slot_list}
for slot in slot_list:
if (str(dialog_id), str(turn_itr), slot) in sys_inform_dict:
inform_dict[slot] = sys_inform_dict[(str(dialog_id), str(turn_itr), slot)]
utt_tok_list.append(delex_utt(utt['text'], inform_dict)) # normalize utterances
else:
utt_tok_list.append(tokenize(utt['text'])) # normalize utterances
modified_slots = {}
# If sys utt, extract metadata (identify and collect modified slots)
if is_sys_utt:
for d in utt['metadata']:
booked = utt['metadata'][d]['book']['booked']
booked_slots = {}
# Check the booked section
if booked != []:
for s in booked[0]:
booked_slots[s] = normalize_label('%s-%s' % (d, s), booked[0][s]) # normalize labels
# Check the semi and the inform slots
for category in ['book', 'semi']:
for s in utt['metadata'][d][category]:
cs = '%s-book_%s' % (d, s) if category == 'book' else '%s-%s' % (d, s)
value_label = normalize_label(cs, utt['metadata'][d][category][s]) # normalize labels
# Prefer the slot value as stored in the booked section
if s in booked_slots:
value_label = booked_slots[s]
# Remember modified slots and entire dialog state
if cs in slot_list and cumulative_labels[cs] != value_label:
modified_slots[cs] = value_label
cumulative_labels[cs] = value_label
mod_slots_list.append(modified_slots.copy())
# Form proper (usr, sys) turns
turn_itr = 0
diag_seen_slots_dict = {}
diag_seen_slots_value_dict = {slot: 'none' for slot in slot_list}
diag_state = {slot: 'none' for slot in slot_list}
sys_utt_tok = []
usr_utt_tok = []
hst_utt_tok = []
hst_utt_tok_label_dict = {slot: [] for slot in slot_list}
for i in range(1, len(utt_tok_list) - 1, 2):
sys_utt_tok_label_dict = {}
usr_utt_tok_label_dict = {}
value_dict = {}
inform_dict = {}
inform_slot_dict = {}
referral_dict = {}
class_type_dict = {}
# Collect turn data
if append_history:
if swap_utterances:
hst_utt_tok = usr_utt_tok + sys_utt_tok + hst_utt_tok
else:
hst_utt_tok = sys_utt_tok + usr_utt_tok + hst_utt_tok
sys_utt_tok = utt_tok_list[i - 1]
usr_utt_tok = utt_tok_list[i]
turn_slots = mod_slots_list[i + 1]
guid = '%s-%s-%s' % (set_type, str(dialog_id), str(turn_itr))
if analyze:
print("%15s %2s %s ||| %s" % (dialog_id, turn_itr, ' '.join(sys_utt_tok), ' '.join(usr_utt_tok)))
print("%15s %2s [" % (dialog_id, turn_itr), end='')
new_hst_utt_tok_label_dict = hst_utt_tok_label_dict.copy()
new_diag_state = diag_state.copy()
for slot in slot_list:
value_label = 'none'
if slot in turn_slots:
value_label = turn_slots[slot]
# We keep the original labels so as to not
# overlook unpointable values, as well as to not
# modify any of the original labels for test sets,
# since this would make comparison difficult.
value_dict[slot] = value_label
elif label_value_repetitions and slot in diag_seen_slots_dict:
value_label = diag_seen_slots_value_dict[slot]
# Get dialog act annotations
inform_label = list(['none'])
if (str(dialog_id), str(turn_itr), slot) in sys_inform_dict:
inform_label = list([normalize_label(slot, i) for i in sys_inform_dict[(str(dialog_id), str(turn_itr), slot)]])
elif (str(dialog_id), str(turn_itr), 'booking-' + slot.split('-')[1]) in sys_inform_dict:
inform_label = list([normalize_label(slot, i) for i in sys_inform_dict[(str(dialog_id), str(turn_itr), 'booking-' + slot.split('-')[1])]])
(informed_value,
referred_slot,
usr_utt_tok_label,
class_type) = get_turn_label(value_label,
inform_label,
sys_utt_tok,
usr_utt_tok,
slot,
diag_seen_slots_value_dict,
slot_last_occurrence=True)
inform_dict[slot] = informed_value
if informed_value != 'none':
inform_slot_dict[slot] = 1
else:
inform_slot_dict[slot] = 0
# Generally don't use span prediction on sys utterance (but inform prediction instead).
sys_utt_tok_label = [0 for _ in sys_utt_tok]
# Determine what to do with value repetitions.
# If value is unique in seen slots, then tag it, otherwise not,
# since correct slot assignment can not be guaranteed anymore.
if label_value_repetitions and slot in diag_seen_slots_dict:
if class_type == 'copy_value' and list(diag_seen_slots_value_dict.values()).count(value_label) > 1:
class_type = 'none'
usr_utt_tok_label = [0 for _ in usr_utt_tok_label]
sys_utt_tok_label_dict[slot] = sys_utt_tok_label
usr_utt_tok_label_dict[slot] = usr_utt_tok_label
if append_history:
if use_history_labels:
if swap_utterances:
new_hst_utt_tok_label_dict[slot] = usr_utt_tok_label + sys_utt_tok_label + new_hst_utt_tok_label_dict[slot]
else:
new_hst_utt_tok_label_dict[slot] = sys_utt_tok_label + usr_utt_tok_label + new_hst_utt_tok_label_dict[slot]
else:
new_hst_utt_tok_label_dict[slot] = [0 for _ in sys_utt_tok_label + usr_utt_tok_label + new_hst_utt_tok_label_dict[slot]]
# For now, we map all occurences of unpointable slot values
# to none. However, since the labels will still suggest
# a presence of unpointable slot values, the task of the
# DST is still to find those values. It is just not
# possible to do that via span prediction on the current input.
if class_type == 'unpointable':
class_type_dict[slot] = 'none'
referral_dict[slot] = 'none'
if analyze:
if slot not in diag_seen_slots_dict or value_label != diag_seen_slots_value_dict[slot]:
print("(%s): %s, " % (slot, value_label), end='')
elif slot in diag_seen_slots_dict and class_type == diag_seen_slots_dict[slot] and class_type != 'copy_value' and class_type != 'inform':
# If slot has seen before and its class type did not change, label this slot a not present,
# assuming that the slot has not actually been mentioned in this turn.
# Exceptions are copy_value and inform. If a seen slot has been tagged as copy_value or inform,
# this must mean there is evidence in the original labels, therefore consider
# them as mentioned again.
class_type_dict[slot] = 'none'
referral_dict[slot] = 'none'
else:
class_type_dict[slot] = class_type
referral_dict[slot] = referred_slot
# Remember that this slot was mentioned during this dialog already.
if class_type != 'none':
diag_seen_slots_dict[slot] = class_type
diag_seen_slots_value_dict[slot] = value_label
new_diag_state[slot] = class_type
# Unpointable is not a valid class, therefore replace with
# some valid class for now...
if class_type == 'unpointable':
new_diag_state[slot] = 'copy_value'
if analyze:
print("]")
if swap_utterances:
txt_a = usr_utt_tok
txt_b = sys_utt_tok
txt_a_lbl = usr_utt_tok_label_dict
txt_b_lbl = sys_utt_tok_label_dict
else:
txt_a = sys_utt_tok
txt_b = usr_utt_tok
txt_a_lbl = sys_utt_tok_label_dict
txt_b_lbl = usr_utt_tok_label_dict
examples.append(DSTExample(
guid=guid,
text_a=txt_a,
text_b=txt_b,
history=hst_utt_tok,
text_a_label=txt_a_lbl,
text_b_label=txt_b_lbl,
history_label=hst_utt_tok_label_dict,
values=diag_seen_slots_value_dict.copy(),
inform_label=inform_dict,
inform_slot_label=inform_slot_dict,
refer_label=referral_dict,
diag_state=diag_state,
class_label=class_type_dict))
# Update some variables.
hst_utt_tok_label_dict = new_hst_utt_tok_label_dict.copy()
diag_state = new_diag_state.copy()
turn_itr += 1
if analyze:
print("----------------------------------------------------------------------")
return examples