Commit 92771bba authored by msurl's avatar msurl
Browse files

update

parent 2c225d38
\section{Abstract}\raggedbottom
Maximizing photosynthetic outcomes is one of many different objectives of a plant. In this thesis we present/ examine a method to predict an optimal veneation pattern for leafs based on the minimal number of leaf cells that have to be transformed into vein cells to supply the entire leaf with nutrients and water. The model only focusses on the number of cells and disregards other aspects of the vascular system, like the vein hierarchy. To implement this model we used a special variant of the Minimum Dominating Set Problem which we implemented using Integer Linear Programming. We call this variant to model the vascular system the Minimum Connected rooted $k$-hop Dominating Set Problem. Our results show that our implementation is not capable of solving larger instances in a reasonable amount of time. In comparison to an implementation in Answer Set Programming our implementation performs worse using the instances that represent plant leafs. We present a detailled comparison between both versions and tested instances of different structure and size. We analyzed why the Integer Linear Programming implementation performes bad on the leaf graphs. The tests also revealed that on randomly generated graphs the Integer Linear Programming implementation outperformed the Answert Set Programming implemantion.
Maximizing photosynthetic outcomes is one of many different objectives of a plant. In this thesis we present and evaluate a method to predict an optimal venation pattern for leafs based on the minimal number of leaf cells that have to be transformed into vein cells to supply the entire leaf with nutrients and water. The model only focuses on the number of cells and disregards other aspects of the vascular system, like the vein hierarchy. To implement this model we used a special variant of the Minimum Dominating Set Problem which we implemented using Integer Linear Programming. We call this variant to model the vascular system the Minimum Connected rooted $k$-hop Dominating Set Problem. Our results show that our implementation is not capable of solving larger instances in a reasonable amount of time. In comparison to an implementation in Answer Set Programming our implementation performs worse using the instances that represent plant leafs. We present a detailed comparison between both versions and tested instances of different structure and size. We analyzed why the Integer Linear Programming implementation performs bad on the leaf graphs. The tests also revealed that on randomly generated graphs the Integer Linear Programming implementation outperformed the Answer Set Programming implementation.
\pagebreak
\newpage
\appendix
\section{Anhang}
\subsection*{Zusatzteil 1} \label{anhang:zusatz1}
Dies ist ein Anhang.
\newpage
\appendix
\section{Appendix}
\subsection*{Full Tables} \label{anhang:zusatz1}
\subsubsection*{ILP}
\begin{table}[H]
\centering
\begin{tabular}{l ccccccccccccc}
name & k & \# lazily added constraints & runtime(s) & optimal\\
\hline
GNM\_ 50\_ 122 & 1 & 66 & 0.034878 & 11\\
GNM\_ 50\_ 245 & 1 & 9 & 0.07 & 7\\
GNM\_ 50\_ 368 & 1 & 0 & 0.013882 & 5 \\
GNM\_ 50\_ 490 & 1 & 4 & 0.016478 & 4\\
GNM\_ 50\_ 612 & 1 & 0 & 0.017783 & 4\\
GNM\_ 50\_ 735 & 1 & 3 & 0.018471 & 3\\
GNM\_ 50\_ 858 & 1 & 3 & 0.038161 & 3\\
GNM\_ 50\_ 980 & 1 & 3 & 0.023549 & 3\\
GNM\_ 50\_ 1102 & 1 & 3 & 0.019566 & 3\\
GNM\_ 50\_ 1225 & 1 & 0 & 0.002396 & 1\\
GNM\_ 100\_ 495 & 1 & 113 & 0.376731 & 14\\
GNM\_ 100\_ 990 & 1 & 17 & 0.488522 & 8\\
GNM\_ 100\_ 1485 & 1 & 7 & 0.396982 & 6\\
GNM\_ 100\_ 1980 & 1 & 0 & 0.315584 & 5\\
GNM\_ 100\_ 2475 & 1 & 0 & 0.045136 & 4\\
GNM\_ 100\_ 2970 & 1 & 0 & 0.013737 & 3\\
GNM\_ 100\_ 3465 & 1 & 0 & 0.010702 & 3\\
GNM\_ 100\_ 3960 & 1 & 0 & 0.007955 & 2\\
GNM\_ 100\_ 4455 & 1 & 0 & 0.00505 & 2\\
GNM\_ 100\_ 4950 & 1 & 0 & 0.00535 & 1\\
GNM\_ 250\_ 3112 & 1 & 0 & 1017.303471 & [17;15]\\
GNM\_ 250\_ 6225 & 1 & 0 & 900.64 & 10 \\
GNM\_ 250\_ 9338 & 1 & 0 & 29.67 & 7\\
GNM\_ 250\_ 12450 & 1 & 0 & 46.78 & 6\\
GNM\_ 250\_ 15562 & 1 & 0 & 12.29 & 5\\
GNM\_ 250\_ 18675 & 1 & 0 & 0.97 & 4\\
GNM\_ 250\_ 21788 & 1 & 3 & 0.415836 & 3\\
GNM\_ 250\_ 24900 & 1 & 0 & 0.040482 & 3\\
GNM\_ 250\_ 28012 & 1 & 0 & 0.024473 & 2\\
GNM\_ 250\_ 31125 & 1 & 0 & 0.017227 & 1\\
GNM\_ 500\_ 12475 & 1 & 42 & 1004.920676 & [21;13]\\
GNM\_ 500\_ 24950 & 1 & 0 & 1051.277153 & [12;8]\\
GNM\_ 500\_ 37425 & 1 & 0 & 9.89 & 4\\
GNM\_ 500\_ 49900 & 1 & 0 & 1017.23594 & [6;5]\\
GNM\_ 500\_ 62375 & 1 & 0 & 178.495614 & 5\\
GNM\_ 500\_ 74850 & 1 & 0 & 9.753998 & 4\\
GNM\_ 500\_ 87325 & 1 & 0 & 21.368156 & 4\\
GNM\_ 500\_ 99800 & 1 & 0 & 0.286309 & 3\\
GNM\_ 500\_ 112275 & 1 & 0 & 0.189313 & 2\\
GNM\_ 500\_ 124750 & 1 & 0 & 0.11 & 1\\
\end{tabular}
\caption[Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs]{Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs}
\end{table}
\begin{table}[H]
\centering
\begin{tabular}{l cccccccccccc}
name & k & \# lazily added constraints & optimal & runtime(s)\\
\hline
GNM\_ 50\_ 122 & 2 & 67 & 11 & 0.03795\\
GNM\_ 50\_ 245 & 2 & 9 & 7 & 0.066219\\
GNM\_ 50\_ 368 & 2 & 0 & 1 & 0.008017\\
GNM\_ 50\_ 490 & 2 & 0 & 1 & 0.002605\\
GNM\_ 50\_ 612 & 2 & 0 & 1 & 0.002223\\
GNM\_ 50\_ 735 & 2 & 0 & 1 & 0.002411\\
GNM\_ 50\_ 858 & 2 & 0 & 1 & 0.002486\\
GNM\_ 50\_ 980 & 2 & 0 & 1 & 0.002173\\
GNM\_ 50\_ 1102 & 2 & 0 & 1 & 0.012025\\
GNM\_ 50\_ 1225 & 2 & 0 & 1 & 0.001756\\
GNM\_ 100\_ 495 & 2 & 6 & 4 & 0.108993\\
GNM\_ 100\_ 990 & 2 & 12 & 2 & 0.060489\\
GNM\_ 100\_ 1485 & 2 & 0 & 1 & 0.022559\\
GNM\_ 100\_ 1980 & 2 & 0 & 1 & 0.004219\\
GNM\_ 100\_ 2475 & 2 & 0 & 1 & 0.004791\\
GNM\_ 100\_ 2970 & 2 & 0 & 1 & 0.044863\\
GNM\_ 100\_ 3465 & 2 & 0 & 1 & 0.004259\\
GNM\_ 100\_ 3960 & 2 & 0 & 1 & 0.004273\\
GNM\_ 100\_ 4455 & 2 & 0 & 1 & 0.003927\\
GNM\_ 100\_ 4950 & 2 & 0 & 1 & 0.003468\\
GNM\_ 250\_ 3112 & 2 & 0 & 2 & 0.270981\\
GNM\_ 250\_ 6225 & 2 & 28 & 1 & 0.101028\\
GNM\_ 250\_ 9338 & 2 & 0 & 1 & 0.17136\\
GNM\_ 250\_ 12450 & 2 & 0 & 1 & 0.031756\\
GNM\_ 250\_ 15562 & 2 & 109 & 1 & 0.257635\\
GNM\_ 250\_ 18675 & 2 & 0 & 1 & 0.035879\\
GNM\_ 250\_ 21788 & 2 & 0 & 1 & 0.030358\\
GNM\_ 250\_ 24900 & 2 & 0 & 1 & 0.024402\\
GNM\_ 250\_ 28012 & 2 & 0 & 1 & 0.018999\\
GNM\_ 250\_ 31125 & 2 & 0 & 1 & 0.016561\\
GNM\_ 500\_ 12475 & 2 & 0 & 2 & 1.123904\\
GNM\_ 500\_ 24950 & 2 & 0 & 1 & 0.663096\\
GNM\_ 500\_ 37425 & 2 & 0 & 1 & 0.228299\\
GNM\_ 500\_ 49900 & 2 & 0 & 1 & 0.272308\\
GNM\_ 500\_ 62375 & 2 & 0 & 1 & 0.29011\\
GNM\_ 500\_ 74850 & 2 & 0 & 1 & 0.249534\\
GNM\_ 500\_ 87325 & 2 & 0 & 1 & 0.250321\\
GNM\_ 500\_ 99800 & 2 & 0 & 1 & 0.170296\\
GNM\_ 500\_ 112275 & 2 & 0 & 1 & 0.148031\\
GNM\_ 500\_ 124750 & 2 & 0 & 1 & 0.119448\\
\end{tabular}
\caption[Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs]{Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs}
\end{table}
\begin{table}[H]
\centering
\begin{tabular}{l cccccccccccc}
name & k & \# lazily added constraints & optimal & runtime(s)\\
\hline
GNM\_ 50\_ 122 & 3 & 0 & 2 & 0.01651\\
GNM\_ 50\_ 245 & 3 & 0 & 1 & 0.005787\\
GNM\_ 50\_ 368 & 3 & 0 & 1 & 0.007788\\
GNM\_ 50\_ 490 & 3 & 0 & 1 & 0.002089\\
GNM\_ 50\_ 612 & 3 & 0 & 1 & 0.002541\\
GNM\_ 50\_ 735 & 3 & 0 & 1 & 0.00202\\
GNM\_ 50\_ 858 & 3 & 0 & 1 & 0.001855\\
GNM\_ 50\_ 980 & 3 & 0 & 1 & 0.00213\\
GNM\_ 50\_ 1102 & 3 & 0 & 1 & 0.012196\\
GNM\_ 50\_ 1225 & 3 & 0 & 1 & 0.001661\\
GNM\_ 100\_ 495 & 3 & 0 & 1 & 0.026969\\
GNM\_ 100\_ 990 & 3 & 0 & 1 & 0.022669\\
GNM\_ 100\_ 1485 & 3 & 0 & 1 & 0.022822\\
GNM\_ 100\_ 1980 & 3 & 0 & 1 & 0.004204\\
GNM\_ 100\_ 2475 & 3 & 0 & 1 & 0.006448\\
GNM\_ 100\_ 2970 & 3 & 0 & 1 & 0.044946\\
GNM\_ 100\_ 3465 & 3 & 0 & 1 & 0.004356\\
GNM\_ 100\_ 3960 & 3 & 0 & 1 & 0.004163\\
GNM\_ 100\_ 4455 & 3 & 0 & 1 & 0.004094\\
GNM\_ 100\_ 4950 & 3 & 0 & 1 & 0.003533\\
GNM\_ 250\_ 3112 & 3 & 14 & 1 & 0.141794\\
GNM\_ 250\_ 6225 & 3 & 28 & 1 & 0.106819\\
GNM\_ 250\_ 9338 & 3 & 51 & 1 & 0.205765\\
GNM\_ 250\_ 12450 & 3 & 82 & 1 & 0.03714\\
GNM\_ 250\_ 15562 & 3 & 109 & 1 & 0.267159\\
GNM\_ 250\_ 18675 & 3 & 0 & 1 & 0.036207\\
GNM\_ 250\_ 21788 & 3 & 0 & 1 & 0.042911\\
GNM\_ 250\_ 24900 & 3 & 0 & 1 & 0.038669\\
GNM\_ 250\_ 28012 & 3 & 0 & 1 & 0.023179\\
GNM\_ 250\_ 31125 & 3 & 0 & 1 & 0.020695\\
GNM\_ 500\_ 12475 & 3 & 0 & 1 & 0.634489\\
GNM\_ 500\_ 24950 & 3 & 68 & 1 & 0.947696\\
GNM\_ 500\_ 37425 & 3 & 118 & 1 & 0.288719\\
GNM\_ 500\_ 49900 & 3 & 0 & 1 & 0.405276\\
GNM\_ 500\_ 62375 & 3 & 0 & 1 & 0.544754\\
GNM\_ 500\_ 74850 & 3 & 0 & 1 & 0.265611\\
GNM\_ 500\_ 87325 & 3 & 0 & 1 & 0.270045\\
GNM\_ 500\_ 99800 & 3 & 0 & 1 & 0.404701\\
GNM\_ 500\_ 112275 & 3 & 0 & 1 & 0.205316\\
GNM\_ 500\_ 124750 & 3 & 0 & 1 & 0.225787\\
\end{tabular}
\caption[Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs]{Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs}
\end{table}
\subsubsection*{ASP}
\begin{table}[H]
\centering
\begin{tabular}{l ccccccccccccc}
name & k & runtime(s) & optimal\\
\hline
GNM\_ 50\_ 122 & 1 & 0.014 & 11\\
GNM\_ 50\_ 245 & 1 & 0.033 & 7\\
GNM\_ 50\_ 368 & 1 & 0.031 & 5 \\
GNM\_ 50\_ 490 & 1 & 0.050 & 4\\
GNM\_ 50\_ 612 & 1 & 0.055 & 4\\
GNM\_ 50\_ 735 & 1 & 0.044 & 3\\
GNM\_ 50\_ 858 & 1 & 0.050 & 3\\
GNM\_ 50\_ 980 & 1 & 0.059 & 2\\
GNM\_ 50\_ 1102 & 1 & 0.052 & 3\\
GNM\_ 50\_ 1225 & 1 & 0.055 & 1\\
GNM\_ 100\_ 495 & 1 & 32.451 & 14\\
GNM\_ 100\_ 990 & 1 & 278.296 & 8\\
GNM\_ 100\_ 1485 & 1 & 42.545 & 6\\
GNM\_ 100\_ 1980 & 1 & 4.049 & 6\\
GNM\_ 100\_ 2475 & 1 & 0.655 & 4\\
GNM\_ 100\_ 2970 & 1 & 0.226 & 3\\
GNM\_ 100\_ 3465 & 1 & 0.208 & 3\\
GNM\_ 100\_ 3960 & 1 & 0.234 & 2\\
GNM\_ 100\_ 4455 & 1 & 0.253 & 2 \\
GNM\_ 100\_ 4950 & 1 & 0.246 & 1\\
GNM\_ 250\_ 3112 & 1 & 1017.204 & [23;9]\\
GNM\_ 250\_ 6225 & 1 & 1009.124 & [12;6] \\
GNM\_ 250\_ 9338 & 1 & 1009.402 & [8;5]\\
GNM\_ 250\_ 12450 & 1 & 1013.976 & [6;4]\\
GNM\_ 250\_ 15562 & 1 & 1008.099 & [5;4]\\
GNM\_ 250\_ 18675 & 1 & 25.687 & 4\\
GNM\_ 250\_ 21788 & 1 & 1.749 & 3\\
GNM\_ 250\_ 24900 & 1 & 1.830 & 3\\
GNM\_ 250\_ 28012 & 1 & 3.400 & 2\\
GNM\_ 250\_ 31125 & 1 & 1.651 & 1\\
GNM\_ 500\_ 12475 & 1 & 1016.396 & [29;7]\\
GNM\_ 500\_ 24950 & 1 & 1011.967 & [15;4]\\
GNM\_ 500\_ 37425 & 1 & 1010.582 & [10;4]\\
GNM\_ 500\_ 49900 & 1 & 1007.821 & [7;4]\\
GNM\_ 500\_ 62375 & 1 & 1006.141 & [6;4]\\
GNM\_ 500\_ 74850 & 1 & 597.053 & 4\\
GNM\_ 500\_ 87325 & 1 & 621.053 & 4\\
GNM\_ 500\_ 99800 & 1 & 13.348 & 3\\
GNM\_ 500\_ 112275 & 1 & 8.705 & 2\\
GNM\_ 500\_ 124750 & 1 & 8.058 & 1\\
\end{tabular}
\caption[Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs using ASP]{Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs using ASP}
\end{table}
\begin{table}[H]
\centering
\begin{tabular}{l cccccccccccc}
name & k & optimal & runtime(s)\\
\hline
GNM\_ 50\_ 122 & 2 & 5 & 0.025\\
GNM\_ 50\_ 245 & 2 & 1 & 0.030\\
GNM\_ 50\_ 368 & 2 & 1 & 0.036\\
GNM\_ 50\_ 490 & 2 & 1 & 0.036\\
GNM\_ 50\_ 612 & 2 & 1 & 0.038\\
GNM\_ 50\_ 735 & 2 & 1 & 0.046\\
GNM\_ 50\_ 858 & 2 & 1 & 0.047\\
GNM\_ 50\_ 980 & 2 & 1 & 0.049\\
GNM\_ 50\_ 1102 & 2 & 1 & 0.052\\
GNM\_ 50\_ 1225 & 2 & 1 & 0.048\\
GNM\_ 100\_ 495 & 2 & 4 & 0.084\\
GNM\_ 100\_ 990 & 2 & 2 & 0.098\\
GNM\_ 100\_ 1485 & 2 & 1 & 0.111\\
GNM\_ 100\_ 1980 & 2 & 1 & 0.143\\
GNM\_ 100\_ 2475 & 2 & 1 & 0.151\\
GNM\_ 100\_ 2970 & 2 & 1 & 0.174\\
GNM\_ 100\_ 3465 & 2 & 1 & 0.188\\
GNM\_ 100\_ 3960 & 2 & 1 & 0.206\\
GNM\_ 100\_ 4455 & 2 & 1 & 0.220\\
GNM\_ 100\_ 4950 & 2 & 1 & 0.213\\
GNM\_ 250\_ 3112 & 2 & 2 & 0.521\\
GNM\_ 250\_ 6225 & 2 & 1 & 0.652\\
GNM\_ 250\_ 9338 & 2 & 1 & 0.737\\
GNM\_ 250\_ 12450 & 2 & 1 & 0.867\\
GNM\_ 250\_ 15562 & 2 & 1 & 0.972\\
GNM\_ 250\_ 18675 & 2 & 1 & 1.141\\
GNM\_ 250\_ 21788 & 2 & 1 & 1.221\\
GNM\_ 250\_ 24900 & 2 & 1 & 1.305\\
GNM\_ 250\_ 28012 & 2 & 1 & 1.453\\
GNM\_ 250\_ 31125 & 2 & 1 & 1.519\\
GNM\_ 500\_ 12475 & 2 & 2 & 2.314\\
GNM\_ 500\_ 24950 & 2 & 1 & 2.770\\
GNM\_ 500\_ 37425 & 2 & 1 & 3.236\\
GNM\_ 500\_ 49900 & 2 & 1 & 3.702\\
GNM\_ 500\_ 62375 & 2 & 1 & 4.218\\
GNM\_ 500\_ 74850 & 2 & 1 & 4.799\\
GNM\_ 500\_ 87325 & 2 & 1 & 5.456\\
GNM\_ 500\_ 99800 & 2 & 1 & 6.199\\
GNM\_ 500\_ 112275 & 2 & 1 & 6.268\\
GNM\_ 500\_ 124750 & 2 & 1 & 6.522\\
\end{tabular}
\caption[Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs using ASP]{Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs using ASP}
\end{table}
\begin{table}[H]
\centering
\begin{tabular}{l cccccccccccc}
name & k & optimal & runtime(s)\\
\hline
GNM\_ 50\_ 122 & 3 & 2 & 0.022\\
GNM\_ 50\_ 245 & 3 & 1 & 0.029\\
GNM\_ 50\_ 368 & 3 & 1 & 0.032\\
GNM\_ 50\_ 490 & 3 & 1 & 0.039\\
GNM\_ 50\_ 612 & 3 & 1 & 0.041\\
GNM\_ 50\_ 735 & 3 & 1 & 0.040\\
GNM\_ 50\_ 858 & 3 & 1 & 0.041\\
GNM\_ 50\_ 980 & 3 & 1 & 0.048\\
GNM\_ 50\_ 1102 & 3 & 1 & 0.051\\
GNM\_ 50\_ 1225 & 3 & 1 & 0.053\\
GNM\_ 100\_ 495 & 3 & 1 & 0.082\\
GNM\_ 100\_ 990 & 3 & 1 & 0.101s\\
GNM\_ 100\_ 1485 & 3 & 1 & 0.119\\
GNM\_ 100\_ 1980 & 3 & 1 & 0.140\\
GNM\_ 100\_ 2475 & 3 & 1 & 0.163\\
GNM\_ 100\_ 2970 & 3 & 1 & 0.172\\
GNM\_ 100\_ 3465 & 3 & 1 & 0.186\\
GNM\_ 100\_ 3960 & 3 & 1 & 0.214\\
GNM\_ 100\_ 4455 & 3 & 1 & 0.227\\
GNM\_ 100\_ 4950 & 3 & 1 & 0.223\\
GNM\_ 250\_ 3112 & 3 & 1 & 0.529\\
GNM\_ 250\_ 6225 & 3 & 1 & 0.657\\
GNM\_ 250\_ 9338 & 3 & 1 & 0.782\\
GNM\_ 250\_ 12450 & 3 & 1 & 0.885\\
GNM\_ 250\_ 15562 & 3 & 1 & 0.967\\
GNM\_ 250\_ 18675 & 3 & 1 & 1.114\\
GNM\_ 250\_ 21788 & 3 & 1 & 1.263\\
GNM\_ 250\_ 24900 & 3 & 1 & 1.323\\
GNM\_ 250\_ 28012 & 3 & 1 & 1.489\\
GNM\_ 250\_ 31125 & 3 & 1 & 1.510\\
GNM\_ 500\_ 12475 & 3 & 1 & 2.297\\
GNM\_ 500\_ 24950 & 3 & 1 & 2.714\\
GNM\_ 500\_ 37425 & 3 & 1 & 3.250\\
GNM\_ 500\_ 49900 & 3 & 1 & 3.719\\
GNM\_ 500\_ 62375 & 3 & 1 & 4.513\\
GNM\_ 500\_ 74850 & 3 & 1 & 4.786\\
GNM\_ 500\_ 87325 & 3 & 1 & 5.305\\
GNM\_ 500\_ 99800 & 3 & 1 & 5.845\\
GNM\_ 500\_ 112275 & 3 & 1 & 6.490\\
GNM\_ 500\_ 124750 & 3 & 1 & 6.802\\
\end{tabular}
\caption[Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs using ASP]{Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs using ASP}
\end{table}
\clearpage
\ No newline at end of file
File added
......@@ -87,6 +87,7 @@
\input{results}
\input{discussion}
\input{conclusion}
\input{anhang}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% ENDE TEXTTEIL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
......
<?xml version="1.0"?>
<!DOCTYPE ipe SYSTEM "ipe.dtd">
<ipe version="70218" creator="Ipe 7.2.20">
<info created="D:20200128174124" modified="D:20200804004222"/>
<info created="D:20200128174124" modified="D:20200812225222"/>
<ipestyle name="basic">
<symbol name="arrow/arc(spx)">
<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
......@@ -714,9 +714,9 @@ h
432 672 m
272 512 l
</path>
<path matrix="1 0 0 1 128 -320" stroke="black">
400 672 m
256 528 l
<path stroke="black">
528 352 m
384 208 l
</path>
<path matrix="1 0 0 1 128 -320" stroke="black">
400 704 m
......@@ -1679,6 +1679,12 @@ h
<group matrix="1 0 0 1 -176 -320">
<use matrix="1 0 0 1 -152 -24" name="mark/disk(sx)" pos="448 672" size="normal" stroke="green"/>
</group>
<text matrix="1 0 0 1 112 -432" transformations="translations" pos="0 560" stroke="seagreen" type="label" valign="baseline">Asymmetric</text>
<text matrix="1 0 0 1 112 -432" transformations="translations" pos="0 560" stroke="seagreen" type="label" width="52.664" height="6.815" depth="1.93" valign="baseline">Asymmetric</text>
<path stroke="black">
384 224 m
384 208 l
384 208 l
384 208 l
</path>
</page>
</ipe>
<?xml version="1.0"?>
<!DOCTYPE ipe SYSTEM "ipe.dtd">
<ipe version="70218" creator="Ipe 7.2.20">
<info created="D:20200703152451" modified="D:20200707155609"/>
<info created="D:20200703152451" modified="D:20200812231518"/>
<ipestyle name="basic">
<symbol name="arrow/arc(spx)">
<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
......@@ -317,7 +317,7 @@ h
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 704" size="normal" stroke="black"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 672" size="normal" stroke="black"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 640" size="normal" stroke="black"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 512" size="normal" stroke="black"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 512" size="large" stroke="black"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
......@@ -498,31 +498,30 @@ h
192 768 l
192 768 l
</path>
<use matrix="1 0 0 1 400 -64" name="mark/disk(sx)" pos="80 512" size="normal" stroke="green"/>
<use matrix="1 0 0 1 400 -64" name="mark/disk(sx)" pos="80 512" size="normal" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 736" size="normal" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 752" size="normal" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 544" size="normal" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 576" size="normal" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 752" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 768" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 784" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 768" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 736" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 720" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 720" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 704" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 560" size="normal" stroke="green"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 560" size="normal" stroke="green"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 592" size="normal" stroke="green"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 592" size="normal" stroke="0 1 0"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 608" size="normal" stroke="green"/>
<use matrix="1 0 0 1 400 -64" name="mark/disk(sx)" pos="80 512" size="large" stroke="green"/>
<use matrix="1 0 0 1 400 -64" name="mark/disk(sx)" pos="80 512" size="large" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 736" size="large" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 752" size="large" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 544" size="large" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 576" size="large" stroke="red"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 752" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 768" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 784" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 768" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 736" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 720" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 720" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 704" size="large" stroke="blue"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 560" size="large" stroke="green"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 560" size="large" stroke="green"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 592" size="large" stroke="green"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 592" size="large" stroke="green"/>
<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 608" size="large" stroke="green"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 832" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 800" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 704" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 672" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 640" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 512" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
......@@ -641,18 +640,8 @@ h
192 768 l
192 768 l
</path>
<use matrix="1 0 0 1 16 -64" name="mark/disk(sx)" pos="80 512" size="normal" stroke="green"/>
<use matrix="1 0 0 1 16 -64" name="mark/disk(sx)" pos="80 512" size="normal" stroke="red"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 736" size="normal" stroke="red"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 752" size="normal" stroke="red"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 752" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 768" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 784" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 768" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 736" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 720" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 720" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 704" size="normal" stroke="blue"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 736" size="large" stroke="red"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 752" size="large" stroke="red"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 560" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 560" size="normal" stroke="black"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 592" size="normal" stroke="black"/>
......@@ -663,7 +652,7 @@ h
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 704" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 672" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 640" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 512" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 512" size="large" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
......@@ -753,26 +742,6 @@ h
192 768 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
192 736 m
64 608 l
64 608 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
80 592 m
192 704 l
192 704 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
64 704 m
176 592 l
176 592 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
64 736 m
192 608 l
192 608 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
64 768 m
192 640 l
192 640 l
......@@ -797,12 +766,11 @@ h
192 768 l
192 768 l
</path>
<use matrix="1 0 0 1 208 -64" name="mark/disk(sx)" pos="80 512" size="normal" stroke="green"/>
<use matrix="1 0 0 1 208 -64" name="mark/disk(sx)" pos="80 512" size="normal" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 736" size="normal" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 752" size="normal" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 544" size="normal" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 576" size="normal" stroke="red"/>
<use matrix="1 0 0 1 208 -64" name="mark/disk(sx)" pos="80 512" size="large" stroke="green"/>
<use matrix="1 0 0 1 208 -64" name="mark/disk(sx)" pos="80 512" size="large" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 736" size="large" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 544" size="large" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 576" size="large" stroke="red"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 752" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 768" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 784" size="normal" stroke="black"/>
......@@ -811,11 +779,6 @@ h
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 720" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 720" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 704" size="normal" stroke="black"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 560" size="normal" stroke="green"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 560" size="normal" stroke="green"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 592" size="normal" stroke="green"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 592" size="normal" stroke="green"/>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 608" size="normal" stroke="green"/>
<path matrix="1 0 0 1 -192 0" stroke="black">
224 640 m
240 656 l
......@@ -907,10 +870,6 @@ h
288 704 l
</path>
<path matrix="1 0 0 1 -192 0" stroke="black">
288 672 m
288 448 l
</path>
<path matrix="1 0 0 1 -192 0" stroke="black">
336 720 m
288 672 l
</path>
......@@ -942,18 +901,11 @@ h
240 720 m
240 688 l
</path>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 576" size="normal" stroke="red"/>
<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 544" size="normal" stroke="red"/>
<path matrix="1 0 0 1 -192 0" stroke="black">
416 704 m
480 768 l
</path>
<path matrix="1 0 0 1 -192 0" stroke="black">
480 768 m
480 544 l
480 544 l
</path>
<path matrix="1 0 0 1 -192 0" stroke="black">
416 672 m
496 752 l
</path>
......@@ -987,6 +939,40 @@ h
496 528 l
</path>
<path matrix="1 0 0 1 -192 0" stroke="black">
448 512 m
464 528 l
</path>
<path matrix="1 0 0 1 -192 0" stroke="black">
464 528 m
416 576 l
</path>
<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 592" size="large" stroke="green"/>
<path matrix="1 0 0 1 160 -64" stroke="black">
192 736 m
64 608 l
64 608 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
80 592 m
192 704 l
192 704 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
64 704 m
176 592 l
176 592 l
</path>
<path matrix="1 0 0 1 160 -64" stroke="black">
64 736 m
192 608 l
192 608 l
</path>
<path matrix="1 0 0 1 -192 0" stroke="black">