Skip to content
Snippets Groups Projects
Commit 79bb707f authored by Marc Feger's avatar Marc Feger
Browse files

Add first slides about motivation, targets and the data

parent 88d3844a
No related branches found
No related tags found
1 merge request!1Argument mining twitter
This diff is collapsed.
bilder/Boeing.jpg

145 KiB

bilder/BoeingLogo.png

3.56 KiB

bilder/Crash.jpg

107 KiB

bilder/FritzGruppe.jpg

30 KiB

bilder/MCAS.jpg

281 KiB

bilder/MichaelMcdonald.jpg

54.2 KiB

bilder/Netflix.jpg

39.8 KiB

This diff is collapsed.
bilder/rheinjug.png

9.27 KiB

...@@ -171,6 +171,66 @@ Department for Computer-Networks and Communication-Systems} ...@@ -171,6 +171,66 @@ Department for Computer-Networks and Communication-Systems}
% % % % % % % % % Ende der eingefügten LaTeX-Dateien % % % % % % % % % % % % % % % % % % Ende der eingefügten LaTeX-Dateien % % % % % % % % %
\section{Motivation}
\begin{frame}{Motivation}
\begin{itemize}
\item Online \textbf{Argumentation} daily on Twitter
\begin{itemize}
\item \textbf{Argumentation}: Usage of \textbf{Arguments}
\item \textbf{Arguments}: Motivated conclusions
\end{itemize}
\item Tweets vary strongly
\item How to find \textbf{argumentative} Tweets
\begin{itemize}
\item \textbf{Argumentive}: At least one \textbf{Argument} included
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Related Work}
\begin{itemize}
\item 10 paper according to \cite{schaefer2021}
\item Hardly any public data
\item Mostly \emph{SVM}, \emph{NB}, \emph{LR}, \emph{RF}, hardly any \emph{Transformer}
\end{itemize}
\end{frame}
\begin{frame}{Targets}
\begin{itemize}
\item [1] Collect and provide annotated Tweets in line with Twitter guidelines
\item [2] Fine-tune \emph{BERT} or \emph{BERTweet} to classify argumentative Tweets
\end{itemize}
\end{frame}
\section{Data}
\begin{frame}{About the data}
\textbf{Argument}: $\langle c, P\rangle$
\textbf{Conclusion}: $c$
\textbf{Premises}: $P = \{p_1, ..., p_n | n \geq 1\}$
\begin{tcolorbox}[colback=cyan!5!white,colframe=cyan!75!black,title=Example:]
\textcolor{red}{RT} \textcolor{magenta}{@SaysSheToday}: The $[$Dixie Chicks$]_{c}$ were attacked just for $[$using 1A right$]_{p_1}$ to say they were ashamed of GWB. They $[$didn’t commit treason$]_{c}$ $[$like the \textcolor{orange}{\#47Senators}$]_{p_2}$
\end{tcolorbox}
\end{frame}
\begin{frame}{About the data}
Pipeline, Reply-Trees, Abortion, Argument
\end{frame}
\begin{frame}
\begin{center}
\includegraphics[scale=0.05]{bilder/AbortionGraph}
\end{center}
\end{frame}
\begin{frame}
\begin{center}
\includegraphics[scale=0.2]{bilder/ReplyTree}
\end{center}
\end{frame}
\begin{frame} \begin{frame}
\begin{center} \begin{center}
\begin{columns} \begin{columns}
......
@article{schaefer2021,
author = {Schaefer, Robin AND Stede, Manfred},
title = {Argument Mining on Twitter: A survey},
journal = {it - Information Technology},
volume = {63},
number = {1},
year = {2021},
pages = { 45-58 },
doi = { 10.1515/itit-2020-0053 }
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment