Skip to content
Snippets Groups Projects
Commit 68fff80e authored by Marc Feger's avatar Marc Feger
Browse files

Add new presentation with vocabulary extraction

parent 26e9d4d5
No related branches found
No related tags found
No related merge requests found
bilder/Abortion_POS.png

23.6 KiB

bilder/Abortion_Time.png

65.1 KiB

bilder/Abortion_WordCloud.png

46.9 KiB

bilder/AnnotationSchema.png

244 KiB

bilder/Brexit_POS.png

25.1 KiB

bilder/Brexit_Time.png

57.8 KiB

bilder/Brexit_WordCloud.png

41.3 KiB

bilder/Corpus.png

78.4 KiB

bilder/Overview.png

75.7 KiB

This diff is collapsed.
bilder/PosDis.png

39.8 KiB

bilder/PrevResults.png

93.8 KiB

bilder/kialo.jpg

89.9 KiB

......@@ -187,113 +187,54 @@ Department for Computer-Networks and Communication-Systems}
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\includegraphics[width=0.8\textwidth]{bilder/Overview.png}
Overview by \cite{SchaeferStede2021}.
CA = Corpus Annotation,
AD = Argument Detection,
SD = Stance Detection,
CD = Claim Detection.
\end{center}
\end{frame}
\begin{frame}
\begin{center}
\includegraphics[width=0.75\textwidth]{bilder/AnnotationSchema.png}
Overview by \cite{SchaeferStede2021}.
\end{center}
\end{frame}
\begin{frame}
\begin{center}
\begin{columns}
\column{0.5\textwidth}
\begin{center}
\includegraphics[width=0.8\textwidth]{bilder/Corpus.png}
Corpora + IAA reported \cite{SchaeferStede2021}.
ADU = Argument Discourse Unit,
cx = Cohens Kappa
\end{center}
\column{0.5\textwidth}
\begin{center}
\includegraphics[width=0.8\textwidth]{bilder/PrevResults.png}
Results reported by \cite{SchaeferStede2021}.
ADU = Argument Discourse Unit,
cx = Cohens Kappa
\end{center}
\end{columns}
\includegraphics[scale=0.3]{bilder/Pipeline}
\end{center}
\end{frame}
\section{Current}
\begin{frame}
\begin{center}
\includegraphics[scale=0.3]{bilder/Pipeline}
\includegraphics[scale=0.3]{bilder/Pipeline_Vocab}
\end{center}
\end{frame}
\begin{frame}{\#abortion}
\begin{frame}{Kialo}
\begin{center}
\begin{columns}
\column{0.5\textwidth}
\begin{center}
\includegraphics[scale=0.2]{bilder/Abortion_WordCloud.png}
\end{center}
\includegraphics[scale=0.1]{bilder/kialo.jpg}
\column{0.5\textwidth}
\begin{center}
\begin{itemize}
\item Topic: Abortion
\item Time: 2021-08-15 - 2021-10-15
\item Root-Tweets: 15.273
\begin{itemize}
\item Conversation-Starter: 2.250
\end{itemize}
\item Conversation-Tweets: 14.569
\item Labeled Arguments (Pro/Con)
\item Strict Guidelines
\item Reviewed
\end{itemize}
\end{center}
\end{columns}
\end{center}
\begin{tcolorbox}[colback=cyan!5!white,colframe=cyan!75!black,title=Kialo Claim]
A \textbf{claim} is, in its most basic form, a \textbf{single piece} of an \textbf{argument} made in a discussion.
[...]
This \textbf{allows} you to \textbf{inspect} each step of the \textbf{thinking behind} an \textbf{argument}.
\end{tcolorbox}
\end{frame}
\begin{frame}{\#abortion}
\begin{center}
\includegraphics[scale=0.3]{bilder/Abortion_Time.png}
\end{center}
\end{frame}
\begin{frame}{\#brexit}
\begin{center}
\begin{columns}
\column{0.5\textwidth}
\begin{center}
\includegraphics[scale=0.2]{bilder/Brexit_WordCloud.png}
\end{center}
\column{0.5\textwidth}
\begin{frame}{Datasets}
\begin{center}
\begin{itemize}
\item Topic: Brexit
\item Time: 2020-01-01 - 2020-03-01
\item Root-Tweets: 151.090
\item [Kialo]:
\begin{itemize}
\item Conversation-Starter: 24.806
\item[abortion]: 3.201 Claims
\item[brexit]: 2.554 Claims
\end{itemize}
\item [Twitter]:
\begin{itemize}
\item[abortion]: 2.250 Root-Tweets
\item[brexit]: 24.806 Root-Tweets
\end{itemize}
\item Conversation-Tweets: 275.968
\end{itemize}
\end{center}
\end{columns}
\end{center}
\end{frame}
\begin{frame}{\#brexit}
\begin{center}
\includegraphics[scale=0.3]{bilder/Brexit_Time.png}
\end{center}
\end{frame}
......@@ -307,9 +248,9 @@ Department for Computer-Networks and Communication-Systems}
\begin{tabular}{@{}lll@{}}
\toprule
\textbf{Open} & \textbf{Closed} & \textbf{Other} \\ \midrule
ADJ & \textbf{AUX} & PUNCT \\
ADV & \textbf{CCONJ} & SYM \\
INTJ & DET & X \\
\textbf{ADJ} & \textbf{AUX} & PUNCT \\
\textbf{ADV} & \textbf{CCONJ} & SYM \\
INTJ & \textbf{DET} & X \\
NOUN & NUM & \\
PROPN & PART & \\
\textbf{VERB} & PRON & \\
......@@ -320,138 +261,141 @@ Department for Computer-Networks and Communication-Systems}
\end{center}
\column{0.6\textwidth}
\begin{itemize}
\item Universal POS Tagging
\item spaCy: en\_core\_web\_sm
\item Open v. Closed $\approx$ Content v. Function
\item Selection supposed by \cite{Knott1993}.
\item \textbf{ADJ}: \\
modify, specify nouns
\item \textbf{ADV}: \\
modify, specify verbs
\item \textbf{*VERB}: \\
typically signal events and actions
\item \textbf{*AUX}: \\
adds funct. or gramma. meaning
\item \textbf{*CCONJ}: \\
expresses a semantic relationship
\item \textbf{DET}: \\
express references in context
\item \textbf{*SCONJ}:\\
making one construction part of the other
\end{itemize}
\end{columns}
\end{center}
\end{frame}
\begin{frame}{POS-Tagging}
\begin{frame}{POS-Tag Distribution by words}
\begin{center}
\begin{columns}
\column{0.4\textwidth}
\begin{center}
\begin{table}[]
\resizebox{0.8\textwidth}{!}{%
\begin{tabular}{@{}lll@{}}
\toprule
\textbf{Open} & \textbf{Closed} & \textbf{Other} \\ \midrule
ADJ & \textbf{AUX} & PUNCT \\
ADV & \textbf{CCONJ} & SYM \\
INTJ & DET & X \\
NOUN & NUM & \\
PROPN & PART & \\
\textbf{VERB} & PRON & \\
& \textbf{SCONJ} & \\ \bottomrule
\end{tabular}%
}
\end{table}
\includegraphics[width=\textwidth]{bilder/PosDis.png}
\end{center}
\column{0.6\textwidth}
\end{frame}
\begin{frame}{Vocabulary Selection}
\begin{itemize}
\item \textbf{VERB}: \\
typically signal events and actions
\item \textbf{AUX}: \\
adds funct. or gramma. meaning
\item \textbf{CCONJ}: \\
links words or larger constituents,\\
expresses a semantic relationship
\item \textbf{SCONJ}:\\
making one construction part of the other,\\
join independent and a dependent clause
\item [1] Sorting Word-Lemma per POS-Tag by occurance
\item [2] Select Index with best Spearman-Rank-Correlation
\item [3] Intersection of all Dataset per POS-Tag till best Index
\end{itemize}
\end{columns}
\end{center}
\end{frame}
\begin{frame}{POS-Tagging Conversation Starter}
\begin{frame}{Step 1: Example SCONJ}
\begin{center}
\includegraphics[scale=0.3]{bilder/Abortion_POS.png}
\begin{tabular}{lllll}
\toprule
{} & \textbf{abortion\_kialo} & \textbf{brexit\_kialo} & \textbf{abortion} & \textbf{brexit} \\
\midrule
0 & that & that & that & that \\
1 & if & if & if & if \\
2 & \textbf{because} & \textbf{as} & how & how \\
3 & when & \textbf{because} & when & \textbf{as} \\
4 & \textbf{as} & when & why & when \\
5 & where & since & \textbf{because} & why \\
6 & whether & for & \textbf{as} & \textbf{because} \\
7 & for & how & where & where \\
8 & while & while & while & for \\
9 & since & than & since & since \\
10 & how & where & for & after \\
11 & why & whether & until & while \\
12 & than & why & before & so \\
13 & upon & before & after & like \\
14 & after & after & whether & than \\
\bottomrule
\end{tabular}
\end{center}
\end{frame}
\begin{frame}{POS-Tagging Conversation Starter}
\begin{frame}{Step 2: Best Indices}
\begin{center}
\includegraphics[scale=0.3]{bilder/Brexit_POS.png}
\begin{tabular}{lll}
\toprule
\textbf{Tag} & \textbf{Spearman} & \textbf{Index} \\
\midrule
SCONJ & 0.93 & 26 \\
CCONJ & 0.83 & 10 \\
AUX & 0.91 & 26 \\
VERB & 1.0 & 10 \\
DET & 0.97 & 27 \\
ADJ & 1.0 & 10 \\
ADV & 0.89 & 30 \\
\bottomrule
\end{tabular}
\end{center}
\end{frame}
\begin{frame}{POS-Tagging Words (PWords)}
\begin{table}[]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{@{}llllllll@{}}
\begin{frame}{Step 3: Vocabulary Selection}
\begin{center}
\resizebox{0.75\textwidth}{!}{
\begin{tabular}{llllllll}
\toprule
\multicolumn{2}{c}{\textbf{SCONJ}} & \multicolumn{2}{c}{\textbf{CONJ}} & \multicolumn{2}{c}{\textbf{AUX}} & \multicolumn{2}{c}{\textbf{VERB}} \\ \midrule
\textit{\textbf{Brexit}} & \multicolumn{1}{l|}{\textit{\textbf{Abortion}}} & \textit{\textbf{Brexit}} & \multicolumn{1}{l|}{\textit{\textbf{Abortion}}} & \textit{\textbf{Brexit}} & \multicolumn{1}{l|}{\textit{\textbf{Abortion}}} & \textit{\textbf{Brexit}} & \textit{\textbf{Abortion}} \\ \midrule
that & \multicolumn{1}{l|}{that} & and & \multicolumn{1}{l|}{and} & is & \multicolumn{1}{l|}{is} & have & have \\
if & \multicolumn{1}{l|}{if} & but & \multicolumn{1}{l|}{but} & will & \multicolumn{1}{l|}{are} & get & get \\
how & \multicolumn{1}{l|}{how} & or & \multicolumn{1}{l|}{or} & be & \multicolumn{1}{l|}{be} & going & do \\
as & \multicolumn{1}{l|}{when} & + & \multicolumn{1}{l|}{+} & are & \multicolumn{1}{l|}{will} & know & want \\
when & \multicolumn{1}{l|}{why} & plus & \multicolumn{1}{l|}{yet} & have & \multicolumn{1}{l|}{can} & \textbf{leave} & know \\
why & \multicolumn{1}{l|}{because} & so & \multicolumn{1}{l|}{nor} & can & \multicolumn{1}{l|}{do} & \textbf{voted} & make \\
because & \multicolumn{1}{l|}{as} & both & \multicolumn{1}{l|}{both} & has & \multicolumn{1}{l|}{should} & want & \textbf{need} \\
where & \multicolumn{1}{l|}{where} & yet & \multicolumn{1}{l|}{neither} & was & \multicolumn{1}{l|}{was} & \textbf{see} & think \\
since & \multicolumn{1}{l|}{while} & either & \multicolumn{1}{l|}{so} & do & \multicolumn{1}{l|}{have} & think & let \\
for & \multicolumn{1}{l|}{since} & nor & \multicolumn{1}{l|}{either} & am & \multicolumn{1}{l|}{would} & let & \textbf{has} \\
after & \multicolumn{1}{l|}{after} & n & \multicolumn{1}{l|}{n} & would & \multicolumn{1}{l|}{has} & \textbf{done} & \textbf{say} \\
while & \multicolumn{1}{l|}{\textbf{until}} && \multicolumn{1}{l|}{plus} & \textbf{been} & \multicolumn{1}{l|}{am} & do & going \\
\textbf{so} & \multicolumn{1}{l|}{for} & neither & \multicolumn{1}{l|}{} & were & \multicolumn{1}{l|}{\textbf{does}} & \textbf{go} & \textbf{had} \\
\textbf{like} & \multicolumn{1}{l|}{\textbf{before}} & \textbf{minus} & \multicolumn{1}{l|}{} & \textbf{could} & \multicolumn{1}{l|}{\textbf{being}} & \textbf{leaving} & \textbf{support} \\
\textbf{despite} & \multicolumn{1}{l|}{\textbf{whether}} & \textbf{daythe} & \multicolumn{1}{l|}{} & should & \multicolumn{1}{l|}{were} & make & \textbf{said} \\ \bottomrule
\end{tabular}%
{} & \textbf{SCONJ} & \textbf{CCONJ} & \textbf{AUX} & \textbf{*VERB} & \textbf{DET} & \textbf{*ADJ} & \textbf{*ADV} \\
\midrule
0 & after & and & \textbf{be} & \textbf{be} & a & more & also \\
1 & as & both & can & \textbf{do} & all & other & always \\
2 & because & but & could & \textbf{have} & an & & as \\
3 & before & either & \textbf{do} & make & another & & even \\
4 & despite & nor & get & & any & & just \\
5 & for & or & \textbf{have} & & both & & long \\
6 & how & so & having & & each & & more \\
7 & if & yet & may & & either & & most \\
8 & once & & might & & every & & never \\
9 & since & & must & & half & & only \\
10 & so & & need & & no & & so \\
11 & than & & shall & & quite & & still \\
12 & that & & should & & some & & then \\
13 & though & & to & & such & & too \\
14 & unless & & will & & that & & very \\
15 & until & & would & & the & & well \\
16 & upon & & & & these & & \\
17 & when & & & & this & & \\
18 & where & & & & those & & \\
19 & whether & & & & what & & \\
20 & while & & & & whatever & & \\
21 & why & & & & which & & \\
22 & with & & & & whose & & \\
\bottomrule
\end{tabular}
}
\end{table}
\end{center}
\end{frame}
\begin{frame}{Pre-Selection}
\begin{frame}{First Impression}
Using vocab. with SCONJ, CCONJ, AUX, DET:
\begin{itemize}
\item Conditions:
\begin{itemize}
\item [1] At least one word in PWords
\item [2] At least 200 characters long
\end{itemize}
\item \#Abortion: $\Rightarrow$ 1.400 Candidates
\item \#Brexit: $\Rightarrow$ 11.842 Candidates
\item [$\Rightarrow$] 0.069\% dropoff in abortion
\item [$\Rightarrow$] 0.066\% dropoff in brexit
\item [$\Rightarrow$] Dropoff = Adds, Allegations, Comments, Links etc.
\item [$\Rightarrow$] Root-Tweets $\geq$200 chars) could be better
\end{itemize}
\end{frame}
\begin{frame}
\begin{tcolorbox}[colback=cyan!5!white,colframe=cyan!75!black,title=Example 1: \#Brexit]
\textbf{How} ironic \textbf{is} this? \textbf{For} 4 years, \textcolor{orange}{\#Remainers} predicted \textbf{that} \textcolor{orange}{\#Brexit} \textbf{would} cause a catastrophic national crisis. Now \textbf{that} Brexit \textbf{has} happened at long last, we \textbf{are} indeed facing a catastrophic national crisis, \textbf{but} it \textbf{has} absolutely nothing to \textbf{do} with Brexit. Go figure \textbf{that} one out.
%\textcolor{red}{RT} \textcolor{magenta}{@SaysSheToday}: The $[$Dixie Chicks$]_{c}$ were attacked just for $[$using 1A right$]_{p_1}$ to say they were ashamed of GWB. They $[$didn’t commit treason$]_{c}$ $[$like the \textcolor{orange}{\#47Senators}$]_{p_2}$
\end{tcolorbox}
\end{frame}
\begin{frame}
\begin{tcolorbox}[colback=cyan!5!white,colframe=cyan!75!black,title=Example 2: \#Brexit]
Labour cannot win the next general election with \textcolor{magenta}{@Keir\_Starmer} \textbf{because} voters \textbf{do}n’t trust him. Starmer \textbf{is} a proven liar \textbf{and} fraud who tried to cheat 17.4m voters out of their \textcolor{orange}{\#Brexit} referendum victory. Starmer \textbf{is} unelectable. \textcolor{orange}{\#LabourDebate} \textcolor{orange}{\#labourhustings}
%\textcolor{red}{RT} \textcolor{magenta}{@SaysSheToday}: The $[$Dixie Chicks$]_{c}$ were attacked just for $[$using 1A right$]_{p_1}$ to say they were ashamed of GWB. They $[$didn’t commit treason$]_{c}$ $[$like the \textcolor{orange}{\#47Senators}$]_{p_2}$
\end{tcolorbox}
\end{frame}
\begin{frame}
\begin{tcolorbox}[colback=cyan!5!white,colframe=cyan!75!black,title=Example 3: \#Brexit]
\textcolor{orange}{\#SaturdayThought} \textbf{If} \textcolor{orange}{\#PMs} "oven-ready Brexit deal" \textbf{is so} "oven-ready," \textbf{why has} he not got full agreement of the EU \textbf{yet}? \textbf{After} all, \textcolor{magenta}{@Conservatives} keep telling us \textbf{that} \textcolor{orange}{\#Brexit} \textbf{is} over now.\textcolor{orange}{\#JustAsking}
%\textcolor{red}{RT} \textcolor{magenta}{@SaysSheToday}: The $[$Dixie Chicks$]_{c}$ were attacked just for $[$using 1A right$]_{p_1}$ to say they were ashamed of GWB. They $[$didn’t commit treason$]_{c}$ $[$like the \textcolor{orange}{\#47Senators}$]_{p_2}$
\end{tcolorbox}
\end{frame}
\begin{frame}
\begin{tcolorbox}[colback=cyan!5!white,colframe=cyan!75!black,title=Example 4: \#Abortion]
POV: Stop saying NOBODY \textbf{is} “pro-abortion." It\textbf{'s} \textcolor{orange}{\#stigmatising}. \textbf{Its} simply inaccurate, Plenty of folk \textbf{are} unapologetically \textcolor{orange}{\#proabortion}; \textbf{because} there\textbf{'s} nothing wrong with \textcolor{orange}{\#Abortion} -it\textbf{`s} a necessary health care procedure \textbf{that} saves lives.
%\textcolor{red}{RT} \textcolor{magenta}{@SaysSheToday}: The $[$Dixie Chicks$]_{c}$ were attacked just for $[$using 1A right$]_{p_1}$ to say they were ashamed of GWB. They $[$didn’t commit treason$]_{c}$ $[$like the \textcolor{orange}{\#47Senators}$]_{p_2}$
\end{tcolorbox}
\end{frame}
\section{Next}
\begin{frame}
\begin{itemize}
\item [1] More controverse topics
\item [2] Cleaning of PWords
\item [3] PWords and POS-Distribution for Kialo
\item [4] Annotation / Quality-Check on Candidate-Subset
\item [1] Selection on SCONJ, CCONJ, AUX
\item [2] Selection sampling:
\begin{itemize}
\item [] \textbf{Sample 1}: Dropoff
\item [] \textbf{Sample 2}: Root-Tweets with length $<$ 200
\item [] \textbf{Sample 3}: Root-Tweets with length $\geq$200
\end{itemize}
\item [3] Annotation of samples
\item [4] Fine-Tuning of argumentive vocabulary
\end{itemize}
\end{frame}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment