Select Git revision
__init__.py
-
Marc Feger authoredMarc Feger authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ANN_Training.py 8.76 KiB
# -*- coding: utf-8 -*-
"""
@author: Laura C. Kühle, Soraya Terrab (sorayaterrab)
TODO: Add log to pipeline
TODO: Remove object set-up
TODO: Optimize Snakefile-vs-config relation
TODO: Improve maximum selection runtime -> Done
TODO: Change model output to binary -> Do? (changes training when applied in ANN_Model)
TODO: Adapt TCD file to new classification
TODO: Add evaluation for all classes (recall, precision, fscore)
TODO: Add documentation
"""
import numpy as np
import matplotlib.pyplot as plt
import os
import torch
from torch.utils.data import TensorDataset, DataLoader, random_split
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, roc_auc_score
import ANN_Model
from Plotting import plot_classification_accuracy, plot_boxplot
class ModelTrainer(object):
def __init__(self, config):
self._reset(config)
def _reset(self, config):
self._dir = config.pop('dir', 'test_data')
self._model_name = config.pop('model_name', '0')
self._training_data = read_training_data(self._dir)
self._batch_size = config.pop('batch_size', min(len(self._training_data)//2, 500))
self._num_epochs = config.pop('num_epochs', 1000)
self._threshold = config.pop('threshold', 1e-5)
self._model = config.pop('model', 'ThreeLayerReLu')
self._model_config = config.pop('model_config', {})
self._loss_function = config.pop('loss_function', 'BCELoss')
self._loss_config = config.pop('loss_config', {})
self._optimizer = config.pop('optimizer', 'Adam')
self._optimizer_config = config.pop('optimizer_config', {})
# Set learning rate
self._learning_rate = config.pop('learning_rate', 1e-2)
self._optimizer_config['lr'] = self._learning_rate
if not hasattr(ANN_Model, self._model):
raise ValueError('Invalid model: "%s"' % self._model)
if not hasattr(torch.nn.modules.loss, self._loss_function):
raise ValueError('Invalid loss function: "%s"' % self._loss_function)
if not hasattr(torch.optim, self._optimizer):
raise ValueError('Invalid optimizer: "%s"' % self._optimizer)
self._model = getattr(ANN_Model, self._model)(self._model_config)
self._loss_function = getattr(torch.nn.modules.loss, self._loss_function)(
**self._loss_config)
self._optimizer = getattr(torch.optim, self._optimizer)(
self._model.parameters(), **self._optimizer_config)
self._validation_loss = torch.zeros(self._num_epochs//10)
def epoch_training(self, dataset=None, num_epochs=None):
# Split data into training and validation set
if dataset is None:
dataset = self._training_data
if num_epochs is None:
num_epochs = self._num_epochs
num_samples = len(dataset)
train_ds, valid_ds = random_split(dataset, [round(num_samples*0.8), round(num_samples*0.2)])
# Load sets
train_dl = DataLoader(train_ds, batch_size=self._batch_size, shuffle=True)
valid_dl = DataLoader(valid_ds, batch_size=self._batch_size * 2)
# Training with Validation
for epoch in range(num_epochs):
self._model.train()
for x_batch, y_batch in train_dl:
pred = self._model(x_batch.float())
loss = self._loss_function(pred, y_batch.float()).mean()
# Run back propagation, update the weights, and zero gradients for next epoch
loss.backward()
self._optimizer.step()
self._optimizer.zero_grad()
self._model.eval()
with torch.no_grad():
valid_loss = sum(
self._loss_function(self._model(x_batch_valid.float()), y_batch_valid.float())
for x_batch_valid, y_batch_valid in valid_dl)
if (epoch+1) % 100 == 0:
self._validation_loss[int((epoch+1) / 100)-1] = valid_loss / len(valid_dl)
print(epoch+1, valid_loss / len(valid_dl))
if valid_loss / len(valid_dl) < self._threshold:
break
def test_model(self, training_set, test_set):
self.epoch_training(training_set, num_epochs=100)
self._model.eval()
x_test, y_test = test_set
# print(self._model(x_test.float()))
model_score = self._model(x_test.float())
# model_output = torch.tensor([[1.0, 0.0] if value == 0 else [0.0, 1.0]
# for value in torch.argmax(model_score, dim=1)])
# print(model_output)
model_output = torch.argmax(model_score, dim=1)
# print(model_output)
y_true = y_test.detach().numpy()[:, 1]
y_pred = model_output.detach().numpy()
# y_score = model_score.detach().numpy()[:, 0]
accuracy = accuracy_score(y_true, y_pred)
# print('sklearn', accuracy)
precision, recall, f_score, support = precision_recall_fscore_support(y_true, y_pred)
# print(precision, recall, f_score)
# print()
# auroc = roc_auc_score(y_true, y_score)
# print('auroc raw', auroc)
auroc = roc_auc_score(y_true, y_pred)
print('auroc true', auroc)
# fpr, tpr, thresholds = roc_curve(y_true, y_score)
# roc = [tpr, fpr, thresholds]
# print(roc)
# plt.plot(fpr, tpr, label="AUC="+str(auroc))
return {'Precision': precision[0], 'Recall': recall[0], 'Accuracy': accuracy,
'F-Score': f_score[0], 'AUROC': auroc}
def save_model(self):
# Saving Model
name = self._model_name
# Set paths for plot files if not existing already
model_dir = self._dir + '/trained models'
if not os.path.exists(model_dir):
os.makedirs(model_dir)
torch.save(self._model.state_dict(), model_dir + '/model__' + name + '.pt')
torch.save(self._validation_loss, model_dir + '/loss__' + name + '.pt')
# def _classify(self):
# pass
def read_training_data(directory, normalized=True):
# Get training dataset from saved file and map to Torch tensor and dataset
input_file = directory + ('/normalized_input_data.npy' if normalized else '/input_data.npy')
output_file = directory + '/output_data.npy'
return TensorDataset(*map(torch.tensor, (np.load(input_file), np.load(output_file))))
def evaluate_models(models, directory, num_iterations=100, colors=None,
compare_normalization=False):
if colors is None:
colors = {'Accuracy': 'red', 'Precision': 'yellow', 'Recall': 'blue',
'F-Score': 'green', 'AUROC': 'purple'}
datasets = {'normalized': read_training_data(directory)}
if compare_normalization:
datasets['raw'] = read_training_data(directory, False)
classification_stats = {measure: {model + ' (' + dataset + ')': [] for model in models
for dataset in datasets} for measure in colors}
for iteration in range(num_iterations):
for train_index, test_index in KFold(
n_splits=5, shuffle=True).split(datasets['normalized']):
# print("TRAIN:", train_index, "TEST:", test_index)
for dataset in datasets.keys():
training_set = TensorDataset(*datasets[dataset][train_index])
test_set = datasets[dataset][test_index]
for model in models:
result = models[model].test_model(training_set, test_set)
for measure in colors:
classification_stats[measure][model + ' (' + dataset + ')'].append(
result[measure])
plot_boxplot(classification_stats, colors)
classification_stats = {measure: {model + ' (' + dataset + ')': np.array(
classification_stats[measure][model + ' (' + dataset + ')']).mean() for model in models
for dataset in datasets} for measure in colors}
plot_classification_accuracy(classification_stats, colors)
# Set paths for plot files if not existing already
plot_dir = directory + '/model evaluation'
if not os.path.exists(plot_dir):
os.makedirs(plot_dir)
# Save plots
for identifier in plt.get_figlabels():
# Set path for figure directory if not existing already
if not os.path.exists(plot_dir + '/' + identifier):
os.makedirs(plot_dir + '/' + identifier)
plt.figure(identifier)
plt.savefig(plot_dir + '/' + identifier + '/' + '_'.join(models.keys()) + '.pdf')
# Loss Functions: BCELoss, BCEWithLogitsLoss,
# CrossEntropyLoss (not working), MSELoss (with reduction='sum')
# Optimizer: Adam, SGD
# trainer = ModelTrainer({'num_epochs': 1000})
# trainer.epoch_training()
# trainer.test_model()
# trainer.save_model()