Skip to content
Snippets Groups Projects
Commit d0c1f03c authored by Marc Feger's avatar Marc Feger
Browse files

Refactor

parent bdab8079
Branches
No related tags found
No related merge requests found
......@@ -80,7 +80,7 @@ At the beginning, the matrices $\mathcal{P}, \mathcal{Q}$ are filled with \texti
This approach is also called \textit{Funk-SVD} or \textit{SVD} in combination with section \ref{subsec:rmf} and \ref{subsec:bmf} \citep{Rendle19}. The algorithm shown above can also be extended. Thus procedures like in section \ref{subsec:amf} can be solved. The second method from section \ref{subsec:amf} is then also called \textit{SVD++}. A coherent \textit{SGD} approach was given by \citet{Kor11}.
\subsubsection{Alternating Least Square}
The second method often used is \textit{alternating least square (ALS)}. In contrast to \textit{SGD}, the vectors $q_i, p_u$ are adjusted in \textit{two steps}. Since \textit{SGD} $q_i$ and $p_u$ are both unknown, this is a \textit{non-convex problem}. The idea of \textit{ALS} is to capture one of the two vectors and work with one unknown variable each. Thus the problem becomes \textit{quadratic} and can be solved optimally. For this purpose the matrix $\mathcal{P}$ is filled with \textit{random numbers} at the beginning. These should be as small as possible and can be generated by a \textit{gaussian-distribution}. Then $\mathcal{P}$ is recorded and all $q_i \in \mathcal{Q}$ are recalculated according to the \textit{least-square problem}. This step is then repeated in reverse order. \textit{ALS} terminated if a \textit{termination condition} such as the \textit{convergence} of the error is satisfied for both steps \citep{Zh08}.
The second method often used is \textit{alternating least square (ALS)}. In contrast to \textit{SGD}, the vectors $q_i, p_u$ are adjusted in \textit{two steps}. Since \textit{SGD} $q_i$ and $p_u$ are both unknown, this is a \textit{non-convex problem}. The idea of \textit{ALS} is to capture one of the two vectors and work with one unknown variable each. Thus the problem becomes \textit{quadratic} and can be solved optimally. For this purpose the matrix $\mathcal{P}$ is filled with \textit{random numbers} at the beginning. These should be as small as possible and can be generated by a \textit{gaussian-distribution}. Then $\mathcal{P}$ is recorded and all $q_i \in \mathcal{Q}$ are recalculated according to the \textit{least-square problem}. This step is then repeated in reverse order. \textit{ALS} terminates if a \textit{termination condition} such as the \textit{convergence} of the error is satisfied for both steps \citep{Zh08}.
\subsubsection{Bayesian Learning}
The third approach is known as \textit{bayesian learning}. With this approach the so-called \textit{gibbs-sampler} is often used. The aim is to determine the \textit{common distribution} of the vectors in $\mathcal{P}, \mathcal{Q}$. For this purpose the \textit{gibbs-sampler} is given an initialization of \textit{hyperparameters} to generate the \textit{initial distribution}. The \textit{common distribution} of the vectors $q_i \in \mathcal{Q}, p_u \in \mathcal{P}$ is approximated by the \textit{conditional probabilities}. The basic principle is to select a variable in a \textit{reciprocal way} and to generate a value dependent on the values of the other variable according to its \textit{conditional distribution}, with the other values remaining unchanged in each \textit{epoch}.
......
No preview for this file type
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment