\textbf{The argument graph}$G =(A, E)$\textbf{ is a directed graph with:}

\begin{itemize}

\item In the resulting argument graph G = (A, E)

\begin{itemize}

\item Each node represents an argument $a_i \in A$ consisting of a conclusion

$c_i$ and a not-empty set of premises $P_i$$\Rightarrow$$a_i =\langle c_i, P_i \rangle$

\item An edge $(a_j, a_i)$ is given if the conclusion $a_j$ is used as a premise

of $a_i$

\item Consequently, $P_i =\{c_1,...,c_k\}, k \geq1$

\end{itemize}

\item Each argument-node $a_i \in A$ consisting of a conclusion $c_i$ and a not-empty set of premises $P_i$$\Rightarrow$$a_i =\langle c_i, P_i \rangle$

\item An edge $(a_j, a_i)$ is given if the conclusion $a_j$ is used as a premise of $a_i$

\item Consequently, $P_i =\{c_1,...,c_k\}, k \geq1$