# -*- coding: utf-8 -*- """Script to plot results of ANN model testing. @author: Laura C. Kühle """ import sys import time import seaborn as sns from tcd import Initial_Condition from tcd import Quadrature from tcd.Plotting import plot_approximation_results sns.set() def main() -> None: """Plot results of ANN model tests.""" with open(str(snakemake.log[0]), 'w', encoding='utf-8') as logfile: sys.stdout = logfile sys.stderr = logfile tic = time.perf_counter() if snakemake.config['schemes'][snakemake.wildcards['scheme']][ 'detector'] == 'ArtificialNeuralNetwork': snakemake.params['dg_params']['detector_config']['model_state'] = \ snakemake.params['directory'] + '/trained models/' + \ snakemake.config['schemes'][snakemake.wildcards['scheme']][ 'detector_config']['model_state'] detector_dict = snakemake.params['dg_params'].copy() init_cond = getattr(Initial_Condition, detector_dict.pop( 'init_cond', 'Sine'))(config=detector_dict.pop('init_config', {})) quadrature = getattr(Quadrature, detector_dict.pop( 'quadrature', 'Gauss'))(detector_dict.pop('quadrature_config', {})) colors = detector_dict.pop('colors', None) plot_approximation_results( directory=snakemake.params['plot_dir'], plot_name=snakemake.wildcards['scheme'], colors=colors, data_file=snakemake.params.plot_dir + '/' + snakemake.wildcards[ 'scheme'], quadrature=quadrature, init_cond=init_cond) toc = time.perf_counter() print(f'Time: {toc - tic:0.4f}s') if __name__ == '__main__': if "snakemake" in locals(): main() else: print('Not Defined.')