# -*- coding: utf-8 -*- """ @author: Laura C. Kühle, Soraya Terrab (sorayaterrab) TODO: Adjust TCs for wavelet detectors (sliding window over all cells instead of every second) TODO: Adjust Boxplot approach (adjacent cells, outer fence, etc.) TODO: Give detailed description of wavelet detection """ import numpy as np import matplotlib from matplotlib import pyplot as plt import seaborn as sns import torch from sympy import Symbol import ANN_Model from Plotting import plot_solution_and_approx, plot_semilog_error, plot_error, plot_shock_tube, \ plot_details, calculate_approximate_solution, calculate_exact_solution matplotlib.use('Agg') x = Symbol('x') z = Symbol('z') class TroubledCellDetector(object): """Class for troubled-cell detection. Detects troubled cells, i.e., cells in the mesh containing instabilities. Attributes ---------- interval_len : float Length of the interval between left and right boundary. cell_len : float Length of a cell in mesh. Methods ------- get_name() Returns string of class name. get_cells(projection) Calculates troubled cells in a given projection. calculate_cell_average_and_reconstructions(projection, stencil_length) Calculates cell averages and reconstructions for a given projection. plot_results(projection, troubled_cell_history, time_history) Plots results and troubled cells of a projection given its evaluation history. """ def __init__(self, config, mesh, wave_speed, polynomial_degree, num_grid_cells, final_time, left_bound, right_bound, basis, init_cond, quadrature): """Initializes TroubledCellDetector. Parameters ---------- mesh : array List of mesh valuation points. wave_speed : float Speed of wave in rightward direction. polynomial_degree : int Polynomial degree. num_grid_cells : int Number of cells in the mesh. Usually exponential of 2. final_time : float Final time for which approximation is calculated. left_bound : float Left boundary of interval. right_bound : float Right boundary of interval. basis : Basis object Basis for calculation. init_cond : InitialCondition object Initial condition for evaluation. quadrature : Quadrature object Quadrature for evaluation. """ self._mesh = mesh self._wave_speed = wave_speed self._polynomial_degree = polynomial_degree self._num_grid_cells = num_grid_cells self._final_time = final_time self._left_bound = left_bound self._right_bound = right_bound self._interval_len = right_bound - left_bound self._cell_len = self._interval_len / num_grid_cells self._basis = basis self._init_cond = init_cond self._quadrature = quadrature # Set parameters from config if existing self._colors = config.pop('colors', {}) self._check_colors() self._reset(config) def _check_colors(self): """Checks plot colors. Checks whether colors for plots were given and sets them if required. """ self._colors['exact'] = self._colors.get('exact', 'k-') self._colors['approx'] = self._colors.get('approx', 'y') def _reset(self, config): """Resets instance variables. Parameters ---------- config : dict Additional parameters for detector. """ sns.set() def get_name(self): """Returns string of class name.""" return self.__class__.__name__ def get_cells(self, projection): """Calculates troubled cells in a given projection. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. """ pass def calculate_cell_average_and_reconstructions(self, projection, stencil_length): """Calculates cell averages and reconstructions for a given projection. Calculate the cell averages of all cells in a projection. Reconstructions are only calculated for the middle cell and added left and right to it, respectively. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. stencil_length : int Size of data array. Returns ------- np.array Matrix containing cell averages and reconstructions for initial projection. """ cell_averages = calculate_approximate_solution( projection, [0], 0, self._basis.get_basis_vector()) left_reconstructions = calculate_approximate_solution( projection, [-1], self._polynomial_degree, self._basis.get_basis_vector()) right_reconstructions = calculate_approximate_solution( projection, [1], self._polynomial_degree, self._basis.get_basis_vector()) middle_idx = stencil_length//2 return np.array(list(map(np.float64, zip(cell_averages[:, :middle_idx], left_reconstructions[:, middle_idx], cell_averages[:, middle_idx], right_reconstructions[:, middle_idx], cell_averages[:, middle_idx+1:])))) def plot_results(self, projection, troubled_cell_history, time_history): """Plots results and troubled cells of a projection given its evaluation history. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. troubled_cell_history : list List of detected troubled cells for each time step. time_history: List of value of each time step. """ plot_shock_tube(self._num_grid_cells, troubled_cell_history, time_history) max_error = self._plot_mesh(projection) print('p =', self._polynomial_degree) print('N =', self._num_grid_cells) print('maximum error =', max_error) def _plot_mesh(self, projection): """Plots exact and approximate solution as well as errors. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. Returns ------- max_error Maximum error between exact and approximate solution. """ grid, exact = calculate_exact_solution( self._mesh[2:-2], self._cell_len, self._wave_speed, self._final_time, self._interval_len, self._quadrature, self._init_cond) approx = calculate_approximate_solution( projection[:, 1:-1], self._quadrature.get_eval_points(), self._polynomial_degree, self._basis.get_basis_vector()) pointwise_error = np.abs(exact-approx) max_error = np.max(pointwise_error) plot_solution_and_approx(grid, exact, approx, self._colors['exact'], self._colors['approx']) plt.legend(['Exact', 'Approx']) plot_semilog_error(grid, pointwise_error) plot_error(grid, exact, approx) return max_error class NoDetection(TroubledCellDetector): """Class without any troubled-cell detection. Methods ------- get_cells(projection) Returns no troubled cells. """ def get_cells(self, projection): """Returns no troubled cells. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. """ return [] class ArtificialNeuralNetwork(TroubledCellDetector): """Class for troubled-cell detection using ANNs. Attributes ---------- stencil_length : int Size of input data array. model : ANNModel object ANN model instance for evaluation. Methods ------- get_cells(projection) Calculates troubled cells in a given projection. """ def _reset(self, config): """Resets instance variables. Parameters ---------- config : dict Additional parameters for detector. """ super()._reset(config) self._stencil_len = config.pop('stencil_len', 3) self._model = config.pop('model', 'ThreeLayerReLu') self._model_config = config.pop('model_config', { 'input_size': self._stencil_len+2, 'first_hidden_size': 8, 'second_hidden_size': 4, 'output_size': 2, 'activation_function': 'Softmax', 'activation_config': {'dim': 1}}) model_state = config.pop('model_state', 'Snakemake-Test/trained models/model__Adam.pt') if not hasattr(ANN_Model, self._model): raise ValueError('Invalid model: "%s"' % self._model) self._model = getattr(ANN_Model, self._model)(self._model_config) # Load the model state and set it to evaluation mode self._model.load_state_dict(torch.load(str(model_state))) self._model.eval() def get_cells(self, projection): """Calculates troubled cells in a given projection. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. Returns ------- list List of indices for all detected troubled cells. """ # Reset ghost cells to adjust for stencil length num_ghost_cells = self._stencil_len//2 projection = projection[:, 1:-1] projection = np.concatenate((projection[:, -num_ghost_cells:], projection, projection[:, :num_ghost_cells]), axis=1) # Calculate input data depending on stencil length input_data = torch.from_numpy(np.vstack([self.calculate_cell_average_and_reconstructions( projection[:, cell-num_ghost_cells:cell+num_ghost_cells+1], self._stencil_len) for cell in range(num_ghost_cells, len(projection[0])-num_ghost_cells)])) # Determine troubled cells model_output = torch.argmax(self._model(input_data.float()), dim=1) return [cell for cell in range(len(model_output)) if model_output[cell] == torch.tensor([1])] class WaveletDetector(TroubledCellDetector): """Class for troubled-cell detection based on wavelet coefficients. ??? """ def _check_colors(self): """Checks plot colors. Checks whether colors for plots were given and sets them if required. """ self._colors['fine_exact'] = self._colors.get('fine_exact', 'k-.') self._colors['fine_approx'] = self._colors.get('fine_approx', 'b-.') self._colors['coarse_exact'] = self._colors.get('coarse_exact', 'k-') self._colors['coarse_approx'] = self._colors.get('coarse_approx', 'y') def _reset(self, config): """Resets instance variables. Parameters ---------- config : dict Additional parameters for detector. """ super()._reset(config) # Set additional necessary parameter self._num_coarse_grid_cells = self._num_grid_cells//2 self._wavelet_projection_left, self._wavelet_projection_right \ = self._basis.get_multiwavelet_projections() def get_cells(self, projection): """Calculates troubled cells in a given projection. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. Returns ------- list List of indices for all detected troubled cells. """ multiwavelet_coeffs = self._calculate_wavelet_coeffs(projection[:, 1: -1]) return self._get_cells(multiwavelet_coeffs, projection) def _calculate_wavelet_coeffs(self, projection): """Calculates wavelet coefficients used for projection to coarser grid. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. Returns ------- np.array Matrix of wavelet coefficients. """ output_matrix = [] for i in range(self._num_coarse_grid_cells): new_entry = 0.5*(projection[:, 2*i] @ self._wavelet_projection_left + projection[:, 2*i+1] @ self._wavelet_projection_right) output_matrix.append(new_entry) return np.transpose(np.array(output_matrix)) def _get_cells(self, multiwavelet_coeffs, projection): """Calculates troubled cells using multiwavelet coefficients. Parameters ---------- multiwavelet_coeffs : np.array Matrix of multiwavelet coefficients. projection : np.array Matrix of projection for each polynomial degree. Returns ------- list List of indices for all detected troubled cells. """ return [] def plot_results(self, projection, troubled_cell_history, time_history): """Plots results and troubled cells of a projection given its evaluation history. Plots results on coarse and fine grid, errors, troubled cells, and coefficient details. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. troubled_cell_history : list List of detected troubled cells for each time step. time_history: List of value of each time step. """ multiwavelet_coeffs = self._calculate_wavelet_coeffs(projection) coarse_projection = self._calculate_coarse_projection(projection) plot_details(projection[:, 1:-1], self._mesh[2:-2], coarse_projection, self._basis.get_basis_vector(), self._basis.get_wavelet_vector(), multiwavelet_coeffs, self._num_coarse_grid_cells, self._polynomial_degree) super().plot_results(projection, troubled_cell_history, time_history) def _calculate_coarse_projection(self, projection): """Calculates coarse projection. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. Returns ------- np.array Matrix of projection on coarse grid for each polynomial degree. """ basis_projection_left, basis_projection_right = self._basis.get_basis_projections() # Remove ghost cells projection = projection[:, 1:-1] # Calculate projection on coarse mesh output_matrix = [] for i in range(self._num_coarse_grid_cells): new_entry = 0.5 * (projection[:, 2 * i] @ basis_projection_left + projection[:, 2 * i + 1] @ basis_projection_right) output_matrix.append(new_entry) coarse_projection = np.transpose(np.array(output_matrix)) return coarse_projection def _plot_mesh(self, projection): """Plots exact and approximate solution as well as errors. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. Returns ------- max_error Maximum error between exact and approximate solution. """ grid, exact = calculate_exact_solution( self._mesh[2:-2], self._cell_len, self._wave_speed, self._final_time, self._interval_len, self._quadrature, self._init_cond) approx = calculate_approximate_solution( projection[:, 1:-1], self._quadrature.get_eval_points(), self._polynomial_degree, self._basis.get_basis_vector()) pointwise_error = np.abs(exact-approx) max_error = np.max(pointwise_error) self._plot_coarse_mesh(projection) plot_solution_and_approx(grid, exact, approx, self._colors['fine_exact'], self._colors['fine_approx']) plt.legend(['Exact (Coarse)', 'Approx (Coarse)', 'Exact (Fine)', 'Approx (Fine)']) plot_semilog_error(grid, pointwise_error) plot_error(grid, exact, approx) return max_error def _plot_coarse_mesh(self, projection): """Plots exact and approximate solution as well as errors for a coarse projection. Parameters ---------- projection : np.array Matrix of projection for each polynomial degree. """ coarse_cell_len = 2*self._cell_len coarse_mesh = np.arange(self._left_bound - (0.5*coarse_cell_len), self._right_bound + (1.5*coarse_cell_len), coarse_cell_len) coarse_projection = self._calculate_coarse_projection(projection) # Plot exact and approximate solutions for coarse mesh grid, exact = calculate_exact_solution( coarse_mesh[1:-1], coarse_cell_len, self._wave_speed, self._final_time, self._interval_len, self._quadrature, self._init_cond) approx = calculate_approximate_solution( coarse_projection, self._quadrature.get_eval_points(), self._polynomial_degree, self._basis.get_basis_vector()) plot_solution_and_approx( grid, exact, approx, self._colors['coarse_exact'], self._colors['coarse_approx']) class Boxplot(WaveletDetector): """Class for troubled-cell detection based on Boxplots. Attributes ---------- fold_len : int Length of folds considered in one Boxplot. whisker_len : int Length of Boxplot whiskers. """ def _reset(self, config): """Resets instance variables. Parameters ---------- config : dict Additional parameters for detector. """ super()._reset(config) # Unpack necessary configurations self._fold_len = config.pop('fold_len', 16) self._whisker_len = config.pop('whisker_len', 3) def _get_cells(self, multiwavelet_coeffs, projection): """Calculates troubled cells using multiwavelet coefficients. Parameters ---------- multiwavelet_coeffs : np.array Matrix of multiwavelet coefficients. projection : np.array Matrix of projection for each polynomial degree. Returns ------- list List of indices for all detected troubled cells. """ indexed_coeffs = [[multiwavelet_coeffs[0, i], i]for i in range(self._num_coarse_grid_cells)] if self._num_coarse_grid_cells < self._fold_len: self._fold_len = self._num_coarse_grid_cells num_folds = self._num_coarse_grid_cells//self._fold_len troubled_cells = [] for fold in range(num_folds): sorted_fold = sorted(indexed_coeffs[fold * self._fold_len:(fold+1) * self._fold_len]) boundary_index = self._fold_len//4 balance_factor = self._fold_len/4.0 - boundary_index first_quartile = (1-balance_factor) * sorted_fold[boundary_index-1][0] \ + balance_factor * sorted_fold[boundary_index][0] third_quartile = (1-balance_factor) * sorted_fold[3*boundary_index-1][0]\ + balance_factor * sorted_fold[3*boundary_index][0] lower_bound = first_quartile - self._whisker_len * (third_quartile-first_quartile) upper_bound = third_quartile + self._whisker_len * (third_quartile-first_quartile) # Check for lower extreme outliers and add respective cells for cell in sorted_fold: if cell[0] < lower_bound: troubled_cells.append(cell[1]) else: break # Check for lower extreme outliers and add respective cells for cell in sorted_fold[::-1][:]: if cell[0] > upper_bound: troubled_cells.append(cell[1]) else: break return sorted(troubled_cells) class Theoretical(WaveletDetector): """"Class for troubled-cell detection based on the projection averages and a cutoff factor. Attributes ---------- cutoff_factor : float Cutoff factor above which a cell is considered troubled. """ def _reset(self, config): """Resets instance variables. Parameters ---------- config : dict Additional parameters for detector. """ super()._reset(config) # Unpack necessary configurations self._cutoff_factor = config.pop('cutoff_factor', np.sqrt(2) * self._cell_len) # comment to line above: or 2 or 3 def _get_cells(self, multiwavelet_coeffs, projection): """Calculates troubled cells using multiwavelet coefficients. Parameters ---------- multiwavelet_coeffs : np.array Matrix of multiwavelet coefficients. projection : np.array Matrix of projection for each polynomial degree. Returns ------- list List of indices for all detected troubled cells. """ troubled_cells = [] max_avg = np.sqrt(0.5) * max(1, max(abs(projection[0][cell+1]) for cell in range(self._num_coarse_grid_cells))) for cell in range(self._num_coarse_grid_cells): if self._is_troubled_cell(multiwavelet_coeffs, cell, max_avg): troubled_cells.append(cell) return troubled_cells def _is_troubled_cell(self, multiwavelet_coeffs, cell, max_avg): """Checks whether a cell is troubled. Parameters ---------- multiwavelet_coeffs : np.array Matrix of multiwavelet coefficients. cell : int Index of cell. max_avg Maximum average of projection. Returns ------- boolean Flag whether cell is troubled. """ max_value = max(abs(multiwavelet_coeffs[degree][cell]) for degree in range(self._polynomial_degree+1))/max_avg eps = self._cutoff_factor / (self._cell_len*self._num_coarse_grid_cells*2) return max_value > eps