# -*- coding: utf-8 -*- """ @author: Laura C. Kühle TODO: Give option to select plotting color TODO: Add documentation to plot_boxplot() -> Done TODO: Adjust documentation for plot_classification_accuracy() -> Done """ from typing import Tuple import numpy as np import matplotlib from matplotlib import pyplot as plt import seaborn as sns from numpy import ndarray from sympy import Symbol from Quadrature import Quadrature from Initial_Condition import InitialCondition matplotlib.use('Agg') x = Symbol('x') z = Symbol('z') sns.set() def plot_solution_and_approx(grid: ndarray, exact: ndarray, approx: ndarray, color_exact: str, color_approx: str) -> None: """Plots approximate and exact solution against each other. Parameters ---------- grid : ndarray List of mesh evaluation points. exact : ndarray Array containing exact evaluation of a function. approx : ndarray Array containing approximate evaluation of a function. color_exact : str String describing color to plot exact solution. color_approx : str String describing color to plot approximate solution. """ print(color_exact, color_approx) plt.figure('exact_and_approx') plt.plot(grid[0], exact[0], color_exact) plt.plot(grid[0], approx[0], color_approx) plt.xlabel('x') plt.ylabel('u(x,t)') plt.title('Solution and Approximation') def plot_semilog_error(grid: ndarray, pointwise_error: ndarray) -> None: """Plots semi-logarithmic error between approximate and exact solution. Parameters ---------- grid : ndarray List of mesh evaluation points. pointwise_error : ndarray Array containing pointwise difference between exact and approximate solution. """ plt.figure('semilog_error') plt.semilogy(grid[0], pointwise_error[0]) plt.xlabel('x') plt.ylabel('|u(x,t)-uh(x,t)|') plt.title('Semilog Error plotted at Evaluation points') def plot_error(grid: ndarray, exact: ndarray, approx: ndarray) -> None: """Plots error between approximate and exact solution. Parameters ---------- grid : ndarray List of mesh evaluation points. exact : ndarray Array containing exact evaluation of a function. approx : ndarray Array containing approximate evaluation of a function. """ plt.figure('error') plt.plot(grid[0], exact[0]-approx[0]) plt.xlabel('X') plt.ylabel('u(x,t)-uh(x,t)') plt.title('Errors') def plot_shock_tube(num_grid_cells: int, troubled_cell_history: list, time_history: list) -> None: """Plots shock tube. Plots detected troubled cells over time to depict the evolution of shocks as shock tubes. Parameters ---------- num_grid_cells : int Number of cells in the mesh. Usually exponential of 2. troubled_cell_history : list List of detected troubled cells for each time step. time_history : list List of value of each time step. """ plt.figure('shock_tube') for pos in range(len(time_history)): current_cells = troubled_cell_history[pos] for cell in current_cells: plt.plot(cell, time_history[pos], 'k.') plt.xlim((0, num_grid_cells // 2)) plt.xlabel('Cell') plt.ylabel('Time') plt.title('Shock Tubes') def plot_details(fine_projection: ndarray, fine_mesh: ndarray, coarse_projection: ndarray, basis: ndarray, wavelet: ndarray, multiwavelet_coeffs: ndarray, num_coarse_grid_cells: int, polynomial_degree: int) -> None: """Plots details of projection to coarser mesh. Parameters ---------- fine_projection, coarse_projection : ndarray Matrix of projection for each polynomial degree. fine_mesh : ndarray List of evaluation points for fine mesh. basis : ndarray Basis vector for calculation. wavelet : ndarray Wavelet vector for calculation. multiwavelet_coeffs : ndarray Matrix of multiwavelet coefficients. num_coarse_grid_cells : int Number of cells in the coarse mesh (half the cells of the fine mesh). Usually exponential of 2. polynomial_degree : int Polynomial degree. """ averaged_projection = [[coarse_projection[degree][cell] * basis[degree].subs(x, value) for cell in range(num_coarse_grid_cells) for value in [-0.5, 0.5]] for degree in range(polynomial_degree + 1)] wavelet_projection = [[multiwavelet_coeffs[degree][cell] * wavelet[degree].subs(z, 0.5) * value for cell in range(num_coarse_grid_cells) for value in [(-1) ** (polynomial_degree + degree + 1), 1]] for degree in range(polynomial_degree + 1)] projected_coarse = np.sum(averaged_projection, axis=0) projected_fine = np.sum([fine_projection[degree] * basis[degree].subs(x, 0) for degree in range(polynomial_degree + 1)], axis=0) projected_wavelet_coeffs = np.sum(wavelet_projection, axis=0) plt.figure('coeff_details') plt.plot(fine_mesh, projected_fine - projected_coarse, 'm-.') plt.plot(fine_mesh, projected_wavelet_coeffs, 'y') plt.legend(['Fine-Coarse', 'Wavelet Coeff']) plt.xlabel('X') plt.ylabel('Detail Coefficients') plt.title('Wavelet Coefficients') def calculate_approximate_solution(projection: ndarray, points: ndarray, polynomial_degree: int, basis: ndarray) -> ndarray: """Calculates approximate solution. Parameters ---------- projection : ndarray Matrix of projection for each polynomial degree. points : ndarray List of evaluation points for mesh. polynomial_degree : int Polynomial degree. basis : ndarray Basis vector for calculation. Returns ------- ndarray Array containing approximate evaluation of a function. """ num_points = len(points) basis_matrix = [[basis[degree].subs(x, points[point]) for point in range(num_points)] for degree in range(polynomial_degree+1)] approx = [[sum(projection[degree][cell] * basis_matrix[degree][point] for degree in range(polynomial_degree+1)) for point in range(num_points)] for cell in range(len(projection[0]))] return np.reshape(np.array(approx), (1, len(approx) * num_points)) def calculate_exact_solution(mesh: ndarray, cell_len: float, wave_speed: float, final_time: float, interval_len: float, quadrature: Quadrature, init_cond: InitialCondition) -> Tuple[ndarray, ndarray]: """Calculates exact solution. Parameters ---------- mesh : ndarray List of mesh valuation points. cell_len : float Length of a cell in mesh. wave_speed : float Speed of wave in rightward direction. final_time : float Final time for which approximation is calculated. interval_len : float Length of the interval between left and right boundary. quadrature : Quadrature object Quadrature for evaluation. init_cond : InitialCondition object Initial condition for evaluation. Returns ------- grid : ndarray Array containing evaluation grid for a function. exact : ndarray Array containing exact evaluation of a function. """ grid = [] exact = [] num_periods = np.floor(wave_speed * final_time / interval_len) for cell in range(len(mesh)): eval_points = mesh[cell]+cell_len / 2 * quadrature.get_eval_points() eval_values = [] for point in range(len(eval_points)): new_entry = init_cond.calculate(eval_points[point] - wave_speed * final_time + num_periods * interval_len) eval_values.append(new_entry) grid.append(eval_points) exact.append(eval_values) exact = np.reshape(np.array(exact), (1, len(exact) * len(exact[0]))) grid = np.reshape(np.array(grid), (1, len(grid) * len(grid[0]))) return grid, exact def plot_classification_accuracy(evaluation_dict: dict, colors: dict) -> None: """Plots classification accuracy. Plots given evaluation measures in a bar plot for each model. Parameters ---------- evaluation_dict : dict Dictionary containing classification evaluation data. colors : dict Dictionary containing plotting colors. """ model_names = evaluation_dict[list(colors.keys())[0]].keys() font_size = 16 - (len(max(model_names, key=len))//3) pos = np.arange(len(model_names)) width = 1/(3*len(model_names)) fig = plt.figure('classification_accuracy') ax = fig.add_axes([0.15, 0.3, 0.75, 0.6]) step_len = 1 adjustment = -(len(model_names)//2)*step_len for measure in evaluation_dict: model_eval = [evaluation_dict[measure][model] for model in evaluation_dict[measure]] ax.bar(pos + adjustment*width, model_eval, width, label=measure, color=colors[measure]) adjustment += step_len ax.set_xticks(pos) ax.set_xticklabels(model_names, rotation=50, ha='right', fontsize=font_size) ax.set_ylabel('Classification (%)') ax.set_ylim(bottom=-0.02) ax.set_ylim(top=1.02) ax.set_title('Classification Evaluation (Barplot)') ax.legend(loc='upper right') def plot_boxplot(evaluation_dict: dict, colors: dict) -> None: """Plots classification accuracy. Plots given evaluation measures in a boxplot for each model. Parameters ---------- evaluation_dict : dict Dictionary containing classification evaluation data. colors : dict Dictionary containing plotting colors. """ model_names = evaluation_dict[list(colors.keys())[0]].keys() font_size = 16 - (len(max(model_names, key=len))//3) fig = plt.figure('boxplot_accuracy') ax = fig.add_axes([0.15, 0.3, 0.75, 0.6]) step_len = 1.5 boxplots = [] adjustment = -(len(model_names)//2)*step_len pos = np.arange(len(model_names)) width = 1/(5*len(model_names)) for measure in evaluation_dict: model_eval = [evaluation_dict[measure][model] for model in evaluation_dict[measure]] boxplot = ax.boxplot(model_eval, positions=pos + adjustment*width, widths=width, meanline=True, showmeans=True, patch_artist=True) for patch in boxplot['boxes']: patch.set(facecolor=colors[measure]) boxplots.append(boxplot) adjustment += step_len ax.set_xticks(pos) ax.set_xticklabels(model_names, rotation=50, ha='right', fontsize=font_size) ax.set_ylim(bottom=-0.02) ax.set_ylim(top=1.02) ax.set_ylabel('Classification (%)') ax.set_title('Classification Evaluation (Boxplot)') ax.legend([bp["boxes"][0] for bp in boxplots], evaluation_dict.keys(), loc='upper right')